1
|
Badiyal A, Mahajan R, Rana RS, Sood R, Walia A, Rana T, Manhas S, Jayswal DK. Synergizing biotechnology and natural farming: pioneering agricultural sustainability through innovative interventions. FRONTIERS IN PLANT SCIENCE 2024; 15:1280846. [PMID: 38584951 PMCID: PMC10995308 DOI: 10.3389/fpls.2024.1280846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The world has undergone a remarkable transformation from the era of famines to an age of global food production that caters to an exponentially growing population. This transformation has been made possible by significant agricultural revolutions, marked by the intensification of agriculture through the infusion of mechanical, industrial, and economic inputs. However, this rapid advancement in agriculture has also brought about the proliferation of agricultural inputs such as pesticides, fertilizers, and irrigation, which have given rise to long-term environmental crises. Over the past two decades, we have witnessed a concerning plateau in crop production, the loss of arable land, and dramatic shifts in climatic conditions. These challenges have underscored the urgent need to protect our global commons, particularly the environment, through a participatory approach that involves countries worldwide, regardless of their developmental status. To achieve the goal of sustainability in agriculture, it is imperative to adopt multidisciplinary approaches that integrate fields such as biology, engineering, chemistry, economics, and community development. One noteworthy initiative in this regard is Zero Budget Natural Farming, which highlights the significance of leveraging the synergistic effects of both plant and animal products to enhance crop establishment, build soil fertility, and promote the proliferation of beneficial microorganisms. The ultimate aim is to create self-sustainable agro-ecosystems. This review advocates for the incorporation of biotechnological tools in natural farming to expedite the dynamism of such systems in an eco-friendly manner. By harnessing the power of biotechnology, we can increase the productivity of agro-ecology and generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the needs of our ever-expanding global population.
Collapse
Affiliation(s)
- Anila Badiyal
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Rishi Mahajan
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ruchi Sood
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Tanuja Rana
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Shilpa Manhas
- Lovely Professional University, Phagwara, Punjab, India
| | - D. K. Jayswal
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
2
|
Dossa EN, Shimelis H, Mrema E, Shayanowako ATI, Laing M. Genetic resources and breeding of maize for Striga resistance: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1163785. [PMID: 37235028 PMCID: PMC10206272 DOI: 10.3389/fpls.2023.1163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/07/2023] [Indexed: 05/28/2023]
Abstract
The potential yield of maize (Zea mays L.) and other major crops is curtailed by several biotic, abiotic, and socio-economic constraints. Parasitic weeds, Striga spp., are major constraints to cereal and legume crop production in sub-Saharan Africa (SSA). Yield losses reaching 100% are reported in maize under severe Striga infestation. Breeding for Striga resistance has been shown to be the most economical, feasible, and sustainable approach for resource-poor farmers and for being environmentally friendly. Knowledge of the genetic and genomic resources and components of Striga resistance is vital to guide genetic analysis and precision breeding of maize varieties with desirable product profiles under Striga infestation. This review aims to present the genetic and genomic resources, research progress, and opportunities in the genetic analysis of Striga resistance and yield components in maize for breeding. The paper outlines the vital genetic resources of maize for Striga resistance, including landraces, wild relatives, mutants, and synthetic varieties, followed by breeding technologies and genomic resources. Integrating conventional breeding, mutation breeding, and genomic-assisted breeding [i.e., marker-assisted selection, quantitative trait loci (QTL) analysis, next-generation sequencing, and genome editing] will enhance genetic gains in Striga resistance breeding programs. This review may guide new variety designs for Striga-resistance and desirable product profiles in maize.
Collapse
Affiliation(s)
- Emeline Nanou Dossa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Emmanuel Mrema
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Tanzania Agricultural Research Institute, Tumbi Center, Tabora, Tanzania
| | | | - Mark Laing
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
3
|
Li X, Wang X, Ma Q, Zhong Y, Zhang Y, Zhang P, Li Y, He R, Zhou Y, Li Y, Cheng M, Yan X, Li Y, He J, Iqbal MZ, Rong T, Tang Q. Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. BMC Genomics 2023; 24:55. [PMID: 36717785 PMCID: PMC9887930 DOI: 10.1186/s12864-023-09148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. RESULTS Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including "Flavonoid biosynthesis," "Oxidoreductase activity," and "Plant hormone signal transduction" in the leaves and roots, and "Iron ion binding," "Acetyl-CoA carboxylase activity," and "Serine-type carboxypeptidase activity" in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in "Spliceosome" and "MAPK signal pathway" dynamically responded to salt stress as salinity changed. Protein-protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. CONCLUSIONS Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.
Collapse
Affiliation(s)
- Xiaofeng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiangqiang Ma
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yunfeng Zhong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yibo Zhang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Zhang
- grid.452857.9Chengdu Research Base of Giant Panda Breeding, Chengdu, 61130 China
| | - Yingzheng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ruyu He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Zhou
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Li
- Mianyang Teachers’ College School of Urban and Rural Construction and Planning, Mianyany, 621000 China
| | - Mingjun Cheng
- grid.412723.10000 0004 0604 889XInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041 China
| | - Xu Yan
- grid.465230.60000 0004 1777 7721Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000 China
| | - Yan Li
- grid.465230.60000 0004 1777 7721Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611041 China
| | - Jianmei He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Muhammad Zafar Iqbal
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingzhao Rong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qilin Tang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
4
|
Cajanus platycarpus Flavonoid 3'5' Hydroxylase_2 ( CpF3'5'H_2) Confers Resistance to Helicoverpa armigera by Modulating Total Polyphenols and Flavonoids in Transgenic Tobacco. Int J Mol Sci 2023; 24:ijms24021755. [PMID: 36675270 PMCID: PMC9862005 DOI: 10.3390/ijms24021755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Pod borer Helicoverpa armigera, a polyphagus herbivorous pest, tremendously incurs crop damage in economically important crops. This necessitates the identification and utility of novel genes for the control of the herbivore. The present study deals with the characterization of a flavonoid 3'5' hydroxylase_2 (F3'5'H_2) from a pigeonpea wild relative Cajanus platycarpus, possessing a robust chemical resistance response to H. armigera. Though F3'5'H_2 displayed a dynamic expression pattern in both C. platycarpus (Cp) and the cultivated pigeonpea, Cajanus cajan (Cc) during continued herbivory, CpF3'5'H_2 showed a 4.6-fold increase vis a vis 3-fold in CcF3'5'H_2. Despite similar gene copy numbers in the two Cajanus spp., interesting genic and promoter sequence changes highlighted the stress responsiveness of CpF3'5'H_2. The relevance of CpF3'5'H_2 in H. armigera resistance was further validated in CpF3'5'H_2-overexpressed transgenic tobacco based on reduced leaf damage and increased larval mortality through an in vitro bioassay. As exciting maiden clues, CpF3'5'H_2 deterred herbivory in transgenic tobacco by increasing total flavonoids, polyphenols and reactive oxygen species (ROS) scavenging capacity. To the best of our knowledge, this is a maiden attempt ascertaining the role of F3'5'H_2 gene in the management of H. armigera. These interesting leads suggest the potential of this pivotal branch-point gene in biotic stress management programs.
Collapse
|