1
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
2
|
Liu Y, Liang J, Huang J, Li X, Huang J, Wang J. Unveiling the immunoregulatory role of interferon-induced transmembrane protein 2 through the JAK/STAT3/PDL1 pathway in gastric cancer. Int Immunopharmacol 2024; 142:113221. [PMID: 39321709 DOI: 10.1016/j.intimp.2024.113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Programmed cell death ligand 1 (PDL1) has been implicated in immune evasion in various tumor types. The objective of this investigation was to assess the correlation between metastasis-associated interferon-induced transmembrane protein 2 (IFITM2) and PDL1, and explore their impact on tumor immunity in gastric cancer (GC). The expression of IFITM2 and PDL1 in human GC tissues was initially evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, as well as immunohistochemistry (IHC). Subsequently, the relationship between IFITM2 and PDL1 was analyzed through Real-time quantitative PCR (RT-qPCR) and western blotting after cell transfection and inhibitor treatment in vitro. The role of IFITM2 and PDL1 in immune killing was further elucidated in both in vitro and in vivo settings. Our study revealed frequent overexpression of IFITM2 and PDL1 in GC. Notably, IFITM2 expression was significantly associated with lymphatic metastasis, clinical stage, and poor survival. Moreover, a positive correlation between PDL1 expression and IFITM2 expression in GC was identified. The activation of tumor-derived IFITM2 was found to enhance PDL1 expression via the JAK/STAT3 pathway in human GC cells (MKN28 and MKN45), leading to apoptosis of Jurkat T cells. Furthermore, IFITM2 induced PDL1 expression in a xenograft mouse model of GC. Based on our findings, we propose that IFITM2 modulates PDL1 expression and tumor immunity through the JAK/STAT3 pathway in GC cells, highlighting the potential of IFITM2 as a therapeutic target for GC immunotherapy.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China.
| | - Jiyun Liang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Junyong Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Xi Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| | - Jiale Wang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, Guangdong, 528308, PR China
| |
Collapse
|
3
|
Liu Y, Liang J, Li X, Huang J, Huang J, Wang J. Interferon-induced transmembrane protein 2 is a prognostic marker in colorectal cancer and promotes its progression by activating the PI3K/AKT pathway. Discov Oncol 2024; 15:191. [PMID: 38802621 PMCID: PMC11130111 DOI: 10.1007/s12672-024-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Interferon-induced transmembrane protein 2 (IFITM2) is involved in repressing viral infection. This study aim to investigate the expression of IFITM2 in colorectal cancer (CRC) and explore its effect on cell proliferation, migration, and invasion. METHODS We analyzed The Cancer Genome Atlas (TCGA) database for IFITM2 expression in colorectal cancer and used western blots to detect IFITM2 protein in specimens and cell lines of colorectal cancers. To assess the association between IFITM2 and clinical features, both univariate and multivariate cox regression analysis were conducted. Kaplan-Meier plots were used in the TCGA database to assess IFITM2 gene expression's prognostic significance. Silencing IFITM2 in SW480 and HCT116 cells was achieved by transient transfection with siRNA. Proliferation of CRCs was examined using Cell Counting Kit-8. The effect of IFITM2 on the migration and invasion of CRC cells was studied using wound healing and transwell assays. Gene set enrichment analysis (GSEA) was used to examine IFITM2-associated pathways and Western blotting was used to confirm it. RESULTS IFITM2 was over-expressed in the CRC tissues and cells, with high IFITM2 expression related to the tumor N, M, and pathologic stages. The presence of IFITM2 significantly impacted patient survival in CRC. The proliferation of SW480 and HCT116 cells was suppressed when IFITM2 was silenced, resulting in weakened migration and invasion of CRC cells. GSEA analysis showed that IFITM2 was positively related to the phosphoinositide 3-kinase (PI3K)/AKT pathway, and western blot results confirmed that IFITM2 activated it. CONCLUSIONS IFITM2 was over-expressed in CRC and modulated the PI3K/AKT pathway to promote CRC cells proliferation and metastasis.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China.
| | - Jiyun Liang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Xi Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Junyong Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiale Wang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Wang P, Pan Y, Zhang Y, Chen C, Hu J, Wang X. Role of interferon-induced transmembrane protein family in cancer progression: a special focus on pancreatic cancer. Med Oncol 2024; 41:85. [PMID: 38472606 DOI: 10.1007/s12032-024-02308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Human interferon-induced transmembrane protein family (IFITMs) consists of five main proteins. IFITM1, IFITM2, and IFITM3 can be induced by interferon, while IFITM5 and IFITM10 are insensitive to interferon. IFITMs has various functions, including well-researched antiviral effects. As a molecule whose expression is significantly increased by interferon in the immune microenvironment, IFITMs has drawn growing interest in recent years for their role in the cancer progression. Unlike antiviral effects, the role and mechanism of IFITMs in cancer progression have not been clearly studied, especially the role and molecular mechanism of IFITMs in pancreatic cancer are rarely reported in the literature. This article focuses on the role and potential mechanism of IFITMs in pancreatic cancer progression by analyzing the function and mechanism of IFITM1-3 in other cancers and conducting bioinformatics analysis using the databases, so as to provide a new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yan Pan
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Zhang Y, Li X, Zhang S, Li J, Liu M, Lu Y, Han J. Role of IFITM2 in osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. Intractable Rare Dis Res 2024; 13:42-50. [PMID: 38404731 PMCID: PMC10883848 DOI: 10.5582/irdr.2023.01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
Interferon-inducible transmembrane (IFITM) are a family of small proteins localized to plasma and endolysosomal membranes. Their functions beyond restricting viral entry and replication have been revealed in recent years. IFITM5 is involved in bone mineralization and is an osteogenic cell surface marker. IFITM1 and 3 interact with desmin and myosin, and are involved in myogenic differentiation. This study found upregulation of Ifitm2 during osteogenic differentiation of C3H10T1/2 cells. This positively correlated to the expression of osteogenic differentiation markers Col1a1, Alp, Runx2, and Ocn. Knockdown of Ifitm2 by siRNAs inhibited osteogenic differentiation, calcium deposition, and osteogenic marker expression of C3H10T1/2 cells. The osteoblast transcriptome revealed that knocking down Ifitm2 affected the expression Wnt signaling pathway-related genes, including Wnt family members, their receptors Lrp, Frizzled, and Lgr, and transmembrane molecule Rnf43 that suppresses the Wnt signaling pathway. Luciferase assays indicated enhancement of canonical Wnt signaling pathways by Ifitm2 overexpression. Furthermore, IFITM2 was colocalized in the metaphyseal bone and growth plate of the mouse tibial bone with SP7, a transcription factor essential for osteoblast differentiation and bone formation. These findings reveal a possible novel function and potential mechanisms of Ifitm2 in osteogenic differentiation.
Collapse
Affiliation(s)
- Yongtao Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiangdong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shanshan Zhang
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Junfeng Li
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Meilin Liu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| |
Collapse
|
6
|
Liang T, Wang X, Wang Y, Ma W. IFN-γ Triggered IFITM2 Expression to Induce Malignant Phenotype in Elderly GBM. J Mol Neurosci 2023; 73:946-955. [PMID: 37889394 DOI: 10.1007/s12031-023-02156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Advanced age is an important risk factor for the worse clinical presentation of gliomas, especially glioblastoma (GBM). The tumor microenvironment (TME) in elderly GBM (eGBM) patients is considerably different from that in young ones, which causes the inferior clinical outcome. Based on the data from the Chinese Glioma Genome Atlas RNA sequence (CGGA RNA-seq), the Cancer Genome Atlas RNA array (TCGA RNA-array), and gene set enrichment (GSE) 16011 array sets, the differential genes and function between eGBM (≥ 60 years old) and young GBM (yGBM, 20-60 years old) groups were explored. Immunohistochemistry (IHC) was utilized to depict the abundance of CD8+ cells (the main resource of IFN-γ) and IFITM2 protein expression in GBM samples. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to verify the link between IFN-γ and IFITM2. Moreover, the small-interfering RNA (siRNA) of IFITM2 was used to explore the function of IFITM2 in GBM. Characterized by inflammatory TME and higher IFITM2 expression, eGBM harbored a shorter survival time. Chemotaxis and inflammatory cytokine-related genes were enriched in the eGBM group, with more infiltrative CD8+ T cells. The IHC of CD8 and IFITM2-staining could demonstrate these results. In addition, the IFN-γ response pathway was activated in eGBM and resulted in a dismal outcome. Next, it was found that IFITM2 triggered by IFN-γ played a key role in IFN-γ-induced malignant phenotype in eGBM.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Mumme H, Thomas BE, Bhasin SS, Krishnan U, Dwivedi B, Perumalla P, Sarkar D, Ulukaya GB, Sabnis HS, Park SI, DeRyckere D, Raikar SS, Pauly M, Summers RJ, Castellino SM, Wechsler DS, Porter CC, Graham DK, Bhasin M. Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia. Nat Commun 2023; 14:6209. [PMID: 37798266 PMCID: PMC10556066 DOI: 10.1038/s41467-023-41994-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.
Collapse
Affiliation(s)
- Hope Mumme
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Upaasana Krishnan
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Pruthvi Perumalla
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Debasree Sarkar
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gulay B Ulukaya
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Himalee S Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunita I Park
- Department of Pathology, Children's Healthcare of Atlanta, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melinda Pauly
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan J Summers
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon M Castellino
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Wechsler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher C Porter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
8
|
Wang H, Wang L, Luo X, Guan J, Zhang X, Zhang L, Xiang Y. Molecular cloning, expression and anti-tumor function analysis of yak IFITM2 gene. Int J Biol Macromol 2022; 209:405-412. [PMID: 35381283 DOI: 10.1016/j.ijbiomac.2022.03.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
IFITM2 is interferon-induced transmembrane protein 2, which plays an extremely key role in anti-tumor and anti-virus diseases. In this study, the 602 bp cDNA sequence of the yak (Bos grunniens) IFITM2 (BgIFITM2) gene was obtained. Moreover, the prokaryotic expression vector of BgIFITM2 protein was constructed and expressed successfully, with a molecular weight of 33.680 kDa. The proliferation activities and migration abilities of HepG2 cells were significantly inhibited after treatment with BgIFITM2 protein (0.1 and 1 μg/mL) (P < 0.05). The expressions of B cell lymphoma-2 (BCL2)/BCL2-associated X (BAX) and molecular target of rapamycin (mTOR) genes were significantly decreased, but the expressions of BAX gene were significantly increased after treatment with BgIFITM2 protein (0.1 and 1 μg/mL) (P < 0.05). The expression of BAX protein was also significantly increased after treatment with 1 μg/mL BgIFITM2 protein (P < 0.05). Finally, the addition of BgIFITM2 protein attenuated the formation of tumor lesions in mice, and the pathological damage of the lung was less than that in the model group. The expression of Ki67 protein in the model group was significantly higher than that in the control group (P < 0.05), but the expression of Ki67 protein in the BgIFITM2 group was significantly lower than that in the model group (P < 0.05). Taken together, BgIFITM2 protein could inhibit the proliferative activity of HepG2 cells by regulating apoptosis-related genes, and reduce the invasiveness of HepG2 cells in mice lung tissue. These results facilitate further studies on the function of BgIFITM2 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| | - Yi Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| |
Collapse
|