1
|
Tian X, Liu J, Yi C, You X, Yuan C. Hsa_circ_0072732 enhances sunitinib resistance of renal cell carcinoma by inhibiting ferroptosis. Discov Oncol 2024; 15:700. [PMID: 39580569 PMCID: PMC11585529 DOI: 10.1007/s12672-024-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most diagnosed urological malignancies with high mortality and increasing incidence. What's more, the sunitinib resistance undoubtedly increased the difficulties in RCC therapy. Circular RNAs (circRNAs) are a newly found type of non-coding RNAs with a special circular structure, and are found to participate in the occurrence development, chemoresistance, and prognosis of cancers. Ferroptosis regulates disease progression mainly via polyunsaturated fatty acid metabolism and glutamine catabolic pathways. The mechanism of circRNAs contributed to sunitinib resistance through ferroptosis has not been elucidated clearly. MATERIALS AND METHODS In our research, we identified a novel circRNA Hsa_circ_0072732 from circRNA datasets (GSE108735 and GSE100186). RNase R and Actinomycin D assays were used to detect the loop structure and stability of circRNAs. qRT-PCR and western blot were used for the detection of RNA and protein levels. CCK8 assays were used to detect proliferation and cell viability. Lipid peroxidation (MDA), and reactive oxygen species (ROS) were detected by indicted kits. Dual-luciferase reporter and RNA pull-down assays were used to detect the RNA interactions. RESULTS Our results showed that Hsa_circ_0072732 was highly expressed in RCC cells. Further investigations showed that the silence of Hsa_circ_0072732 could increase RCC sensitivity to sunitinib. Hsa_circ_0072732 contributed to sunitinib chemoresistance by impairing ferroptosis. Hsa_circ_0072732 exerts its function mainly by acting as sponges for miR-548b-3p and regulating the expression SLC7A11. Our research suggests that ferroptosis is involved in sunitinib resistance, and targeting ferroptosis is a promising way for RCC treatment. CONCLUSION Our research suggests Hsa_circ_0072732 enhanced renal cell carcinoma sunitinib resistance by inhibiting ferroptosis through miR-548b-3p/SLC7A11.
Collapse
Affiliation(s)
- Xiaorui Tian
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Jun Liu
- Nursing Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Cheng Yi
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiangyun You
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chunli Yuan
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Yue J, Yin Y, Feng X, Xu J, Li Y, Li T, Liang S, He X, Liu Z, Wang Y. Discovery of the Inhibitor Targeting the SLC7A11/xCT Axis through In Silico and In Vitro Experiments. Int J Mol Sci 2024; 25:8284. [PMID: 39125853 DOI: 10.3390/ijms25158284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In the development and progression of cervical cancer, oxidative stress plays an important role within the cells. Among them, Solute Carrier Family 7 Member 11 (SLC7A11/xCT) is crucial for maintaining the synthesis of glutathione and the antioxidant system in cervical cancer cells. In various tumor cells, studies have shown that SLC7A11 inhibits ferroptosis, a form of cell death, by mediating cystine uptake and maintaining glutathione synthesis. Additionally, SLC7A11 is also involved in promoting tumor metastasis and immune evasion. Therefore, inhibiting the SLC7A11/xCT axis has become a potential therapeutic strategy for cervical cancer. In this study, through structure-based high-throughput virtual screening, a compound targeting the SLC7A11/xCT axis named compound 1 (PubChem CID: 3492258) was discovered. In vitro experiments using HeLa cervical cancer cells as the experimental cell model showed that compound 1 could reduce intracellular glutathione levels, increase glutamate and reactive oxygen species (ROS) levels, disrupt the oxidative balance within HeLa cells, and induce cell death. Furthermore, molecular dynamics simulation results showed that compound 1 has a stronger binding affinity with SLC7A11 compared to the positive control erastin. Overall, all the results mentioned above indicate the potential of compound 1 in targeting the SLC7A11/xCT axis and treating cervical cancer both in vitro and in silico.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yekui Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 PMCID: PMC11151680 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
4
|
Wang L, Liu Y, Tai J, Dou X, Yang H, Li Q, Liu J, Yan Z, Liu X. Transcriptome and single-cell analysis reveal disulfidptosis-related modification patterns of tumor microenvironment and prognosis in osteosarcoma. Sci Rep 2024; 14:9186. [PMID: 38649690 PMCID: PMC11035678 DOI: 10.1038/s41598-024-59243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yu Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xinyu Dou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Hongjuan Yang
- School of Foreign Studies, Xi'an Medical University, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Qiaochu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Xu J, Guo K, Sheng X, Huang Y, Wang X, Dong J, Qin H, Wang C. Correlation analysis of disulfidptosis-related gene signatures with clinical prognosis and immunotherapy response in sarcoma. Sci Rep 2024; 14:7158. [PMID: 38531930 DOI: 10.1038/s41598-024-57594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfidptosis, a newly discovered type of programmed cell death, could be a mechanism of cell death controlled by SLC7A11. This could be closely associated with tumor development and advancement. Nevertheless, the biological mechanism behind disulfidptosis-related genes (DRGs) in sarcoma (SARC) is uncertain. This study identified three valuable genes (SLC7A11, RPN1, GYS1) associated with disulfidptosis in sarcoma (SARC) and developed a prognostic model. The multiple databases and RT-qPCR data confirmed the upregulated expression of prognostic DRGs in SARC. The TCGA internal and ICGC external validation cohorts were utilized to validate the predictive model capacity. Our analysis of DRG riskscores revealed that the low-risk group exhibited a more favorable prognosis than the high-risk group. Furthermore, we observed a significant association between DRG riskscores and different clinical features, immune cell infiltration, immune therapeutic sensitivity, drug sensitivity, and RNA modification regulators. In addition, two external independent immunetherapy datasets and clinical tissue samples were collected, validating the value of the DRGs risk model in predicting immunotherapy response. Finally, the SLC7A11/hsa-miR-29c-3p/LINC00511, and RPN1/hsa-miR-143-3p/LINC00511 regulatory axes were constructed. This study provided DRG riskscore signatures to predict prognosis and response to immunotherapy in SARC, guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Kangwen Guo
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoan Sheng
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yuting Huang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xuewei Wang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China.
| | - Haotian Qin
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China.
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Chao Wang
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Wang H, Liu F, Xue J, Liu Y, Gao W, Yang S, Mi Y, Zhang X, Gao S, Geng C. The investigation of circRNA profiling reveals the regulatory role of the hsa_circ_0000375/miR-7706 pathway in breast cancer. Mol Biol Rep 2023; 50:9993-10004. [PMID: 37904009 DOI: 10.1007/s11033-023-08798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) take an effect on tumorigenesis and progression. However, circRNAs have not been systematically identified in breast cancer (BC) as crucial regulators in multitudinous biological processes. This study is conducted to explore novel circRNAs in BC and the corresponding mechanisms of their action. METHODS The circRNA expression profile and RNA-sequencing data about BC were respectively downloaded from public database. Differentially expressed circRNAs, miRNAs, and mRNAs were identified by fold change filtering. The competing endogenous RNAs (ceRNAs) network was established based on the relationship between circular RNAs, miRNAs and mRNAs. GO and KEGG enrichment analysis of the overlapped genes were carried out to predict the potential functions and mechanisms of circRNAs in BC. The CytoHubba plugin in Cytoscape was applied to identify the hub genes from the PPI regulatory network. Kaplan-Meier plotter was used to perform survival analysis of these hub genes further. Real-time PCR was performed to test the expression of circRNA in BC tissues. Cell function studies including transwell analysis and CCK-8 analysis were used to investigate circRNAs' biological functions. RESULTS A total of seven circRNAs exhibiting differential expression were identified in this study. After the intersection between the predicted target miRNA and the down-regulated differential miRNAs (DEmiRNAs), circRNA-miRNA interactions involving 3 circRNAs and 4 miRNAs were identified. Venn diagram was utilized to intersect the predicted target genes of the 4 miRNAs and the down-regulated differential genes in BC, and 149 overlapped genes were screened out ulteriorly. Additionally, we built a protein-protein interaction (PPI) network and selected six hub genes. Moreover, the survival data of BC patients suggested that low expression of ADIPOQ, LPL and LEP were significantly correlated with poor prognosis. Results from real-time PCR indicated that hsa_circ_0000375 was significantly down-regulated in breast cancer tissues. Functional in vitro experiments showed that over-expression of hsa_circ_0000375 can restrain proliferation, migration and invasion abilities of breast cancer cells. Further verification indicated that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706. CONCLUSIONS This study constructed and analyzed a circRNA-associated ceRNA regulatory network and uncovered that hsa_circ_0000375 exerted its anti-oncogene effect via sponge of miR-7706.
Collapse
Affiliation(s)
- Haoqi Wang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Jing Xue
- Radiology Department, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yaping Liu
- Medical insurance center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Wei Gao
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Yang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Yunzhe Mi
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Xi Zhang
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China
| | - Shan Gao
- Gland Surgery, the Hebei Province People's Hospital, Shijiazhuang, 050000, Hebei, P.R. China.
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, Hebei, P.R. China.
| |
Collapse
|