1
|
Li X, Zhu M. Genome-wide identification of the Hsp70 gene family in Penaeus chinensis and their response to environmental stress. Anim Biotechnol 2024; 35:2344205. [PMID: 38651890 DOI: 10.1080/10495398.2024.2344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The heat shock protein 70 (HSP70) gene family plays a crucial role in the response of organisms to environmental stress. However, it has not been systematically characterized in shrimp. In this study, we identified 25 PcHsp70 genes in the Penaeus chinensis genome. The encoded proteins were categorized into six subgroups based on phylogenetic relationships. Tandem duplication was the main driver of amplification in the PcHsp70 family, and the genes have experienced strong purifying selection during evolution. Transcriptome data analysis revealed that the 25 PcHsp70 members have different expression patterns in shrimp under conditions of low temperature, low salinity, and white spot syndrome virus infection. Among them, PcHsp70.11 was significantly induced under all three stress conditions, suggesting that this gene plays an important role in response to environmental stress in P. chinensis. To the best of our knowledge, this is the first study to systematically analyze the Hsp70 gene family in shrimp. The results provide important information on shrimp Hsp70s, contributing to a better understanding of the role of these genes in environmental stress and providing a basis for further functional studies.
Collapse
Affiliation(s)
- Xinran Li
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Miao Zhu
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
2
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
3
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Wang YX, Yu TF, Wang CX, Wei JT, Zhang SX, Liu YW, Chen J, Zhou YB, Chen M, Ma YZ, Lan JH, Zheng JC, Li F, Xu ZS. Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance. Int J Biol Macromol 2023; 246:125694. [PMID: 37414309 DOI: 10.1016/j.ijbiomac.2023.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Adaptation to drought and salt stresses is a fundamental part of plant cell physiology and is of great significance for crop production under environmental stress. Heat shock proteins (HSPs) are molecular chaperones that play a crucial role in folding, assembling, translocating, and degrading proteins. However, their underlying mechanisms and functions in stress tolerance remain elusive. Here, we identified the HSP TaHSP17.4 in wheat by analyzing the heat stress-induced transcriptome. Further analysis showed that TaHSP17.4 was significantly induced under drought, salt, and heat stress treatments. Intriguingly, yeast-two-hybrid analysis showed that TaHSP17.4 interacts with the HSP70/HSP90 organizing protein (HOP) TaHOP, which plays a significant role in linking HSP70 and HSP90. We found that TaHSP17.4- and TaHOP-overexpressing plants have a higher proline content and a lower malondialdehyde content than wild-type plants under stress conditions and display strong tolerance to drought, salt, and heat stress. Additionally, qRT-PCR analysis showed that stress-responsive genes relevant to reactive oxygen species scavenging and abscisic acid signaling pathways were significantly induced in TaHSP17.4- and TaHOP-overexpressing plants under stress conditions. Together, our findings provide insight into HSP functions in wheat and two novel candidate genes for improvement of wheat varieties.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China
| | - Chun-Xiao Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ji-Tong Wei
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Shuang-Xi Zhang
- Institute of Crop Science, Ningxia Academy of Agriculture and Forestry Sciences, Yongning 750105, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Cheng Zheng
- Anhui Science and Technology University, College of Agronomy, Fengyang 233100, China
| | - Feng Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
5
|
He D, Shi J, Qiu J, Hou Y, Du Y, Gao T, Huang W, Wu J, Lee YW, Mohamed SR, Liu X, Xu J. Antifungal activities of a novel triazole fungicide, mefentrifluconazole, against the major maize pathogen Fusarium verticillioides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105398. [PMID: 37105621 DOI: 10.1016/j.pestbp.2023.105398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Fusarium ear rot (FER) is a serious fungal disease occurring the late growth stage of maize. FER not only reduces the yield of maize but also causes mycotoxin contamination, which affects the quality of maize and threatens human and animal health. Fusarium verticillioides is the predominant causative pathogen of FER worldwide. At present, there is no registered fungicide for use against maize FER in China. The novel isopropyl alcohol-triazole fungicide mefentrifluconazole (MFZ) has been shown to be effective against several Fusarium spp., but little is known about its specific activity against F. verticillioides. MFZ exhibited strong antifungal activities against 50 strains of F. verticillioides collected from the major maize-growing areas in China. MFZ inhibited mycelial growth, conidium production, germination and germ tube elongation of F. verticillioides. MFZ treatment significantly reduced fumonisin production and the expression levels of fumonisin biosynthetic genes. Genome-wide transcriptional profiling of F. verticillioides in response to MFZ indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly downregulated by MFZ. MFZ treatment resulted in reduced ergosterol production and increased glycerol and malonaldehyde production as well as relative conductivity in F. verticillioides. A 2-year field experiment showed a significant reduction in FER severity in maize after spraying with MFZ at the tasseling stage. This study evaluated the potential of MFZ to control FER in maize and provides insights into its antifungal activities and mechanism of action against F. verticillioides.
Collapse
Affiliation(s)
- Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jianbo Qiu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yuzhou Du
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Wenwen Huang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Jiawen Wu
- Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, Jiangsu, PR China
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Egypt, Giza 12411, Egypt
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
6
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|