1
|
Li L, Shi C, Dong F, Xu G, Lei M, Zhang F. Targeting pyroptosis to treat ischemic stroke: From molecular pathways to treatment strategy. Int Immunopharmacol 2024; 133:112168. [PMID: 38688133 DOI: 10.1016/j.intimp.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Ischemic stroke is the primary reason for human disability and death, but the available treatment options are limited. Hence, it is imperative to explore novel and efficient therapies. In recent years, pyroptosis (a pro-inflammatory cell death characterized by inflammation) has emerged as an important pathological mechanism in ischemic stroke that can cause cell death through plasma membrane rupture and release of inflammatory cytokines. Pyroptosis is closely associated with inflammation, which exacerbates the inflammatory response in ischemic stroke. The level of inflammasomes, GSDMD, Caspases, and inflammatory factors is increased after ischemic stroke, exacerbating brain injury by mediating pyroptosis. Hence, inhibition of pyroptosis can be a therapeutic strategy for ischemic stroke. In this review, we have summarized the relationship between pyroptosis and ischemic stroke, as well as a series of treatments to attenuate pyroptosis, intending to provide insights for new therapeutic targets on ischemic stroke.
Collapse
Affiliation(s)
- Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Chonglin Shi
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
2
|
Bahi A. Gestational environmental enrichment prevents chronic social stress induced anxiety- and ethanol-related behaviors in offspring. Pharmacol Biochem Behav 2024; 234:173679. [PMID: 37977553 DOI: 10.1016/j.pbb.2023.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Epidemiological surveys have shown a strong relationship between maternal stress and offspring's mood disorders. Growing evidence suggested that environmental enrichment (EE) improves cognitive function in models of psychiatric and neurological disorders. However, the potential protective effects of gestational EE on social stress-elicited mood disorders in offspring have not been studied. Knowing that the undeveloped brain is more sensitive to gestational environmental stimuli, we hypothesized that initiating cognitive stimulation, during gestation, would protect against social stress-induced behavioral alterations in adulthood. Therefore, the present study aimed to investigate the effects of gestational EE on social stress-elicited anxiety- and ethanol-related behaviors in adult offspring. EE consisted of free access, of dams, to tubular devices of different shapes, colors, and sizes that were changed regularly. After birth and weaning, young adult offspring were exposed to 19 days of social stress and anxiety-like behavior was evaluated by elevated plus maze, open field, and marbles burying tests. The two-bottle choice (TBC) drinking paradigm was used to assess stress-induced ethanol intake. Results showed that gestational EE prevented social stress-elicited anxiogenic-like effects with no differences in spontaneous locomotor activity. Moreover, in the TBC paradigm, mice pre-exposed to EE consistently showed a significantly decreased consumption and preference for ethanol with no effects on tastants' intakes. Interestingly, gestational EE increased serum BDNF levels, which showed a correlation with measures of anxiety- and ethanol-related behaviors. These findings indicate that some neurodevelopmental changes associated with prenatal EE may counteract adult social stress-induced behavioral alterations through a BDNF mechanism. Therefore, we propose that gestational EE has significant protective and beneficial effects on social stress-induced cognitive impairment. It can also alleviate anxiety-like behavior and subsequent excessive alcohol consumption.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Anatomy, CMHS, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Yan J, Liu Y, Zheng F, Lv D, Jin D. Environmental enrichment enhanced neurogenesis and behavioral recovery after stroke in aged rats. Aging (Albany NY) 2023; 15:9453-9463. [PMID: 37688770 PMCID: PMC10564416 DOI: 10.18632/aging.205010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND AND PURPOSE Age is identified as a significant prognostic factor for poorer outcome after stroke. However, environmental enrichment (EE) has been reported to promote functional recovery after ischemic stroke. The purpose of this study was to investigate whether environmental enrichment was beneficial to ischemic stroke in aged rats. METHODS Aged rats were randomly assigned as control rats, rats subjected to cerebral ischemia, and rats with cerebral ischemia treated with EE for 30 days. Focal cortical ischemia was induced by intracranial injection of endothelin-1 (ET-1). EE housing began one day after focal ischemia and was maintained for the whole experimental period. We used immunofluorescence staining to analyze the neurogenesis in the subventricular zone (SVZ) and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay to evaluate apoptosis. The expression of neuronal nuclei, glial fibrillary acidic protein (GFAP) and Iba-1 around the infarcted area were also measured by double immunohistochemistry. RESULTS EE enhanced the proliferation of newborn neurons in the SVZ, as well as increased the long-term survival of newborn neurons. EE also exerted effects on inflammation after stroke. Furthermore, EE suppressed apoptosis and improved the motor functions after stroke in the aged rats. CONCLUSIONS EE improved post-stroke recovery on the basis of enhancing neurogenesis in aged rats.
Collapse
Affiliation(s)
- Ji Yan
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Yan Liu
- Department of Neurology, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Fangda Zheng
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Dan Lv
- Department of Laboratory Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Di Jin
- Department of Acupuncture (Neurology), The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Chen X, Zhang Y, Ding Q, He Y, Li H. Role of IL-17A in different stages of ischemic stroke. Int Immunopharmacol 2023; 117:109926. [PMID: 37012860 DOI: 10.1016/j.intimp.2023.109926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
Interleukin-17A (IL-17A) plays an important role in the progression of ischemic stroke. IL-17A mediates the endothelial inflammatory response, promotes water and sodium retention, and changes the electrophysiological structure of the atrium, accelerating the progression of ischemic stroke risk factors such as atherosclerotic plaques, hypertension, and atrial fibrillation. In the acute phase of ischemic stroke, IL-17A mediates neuronal injury through neutrophil chemotaxis to the site of injury, the induction of neuronal apoptosis, and activation of the calpain-TRPC-6 (transient receptor potential channel-6) pathway. During ischemic stroke recovery, IL-17A, which is mainly derived from reactive astrocytes, promotes and maintains the survival of neural precursor cells (NPCs) in the subventricular zone (SVZ), neuronal differentiation, and synapse formation and participates in the repair of neurological function. Therapies targeting IL-17A-associated inflammatory signaling pathways can reduce the risk of ischemic stroke and neuronal damage and are a new therapeutic strategy for ischemic stroke and its risk factors. In this paper, we will briefly discuss the pathophysiological role of IL-17A in ischemic stroke risk factors, acute and chronic inflammatory responses, and the potential therapeutic value of targeting IL-17A.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yi Zhang
- Department of General Medicine, Jiangkou Town Center Hospital, Ganxian 341100, China
| | - Qian Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
| | - Yanru He
- Medical Insurance Department, Mingya Insurance Brokers Co., Ltd., Beijing 100020, China
| | - Hui Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Pre-ischaemic Treatment with Enriched Environment Alleviates Acute Neuronal Injury by Inhibiting Endoplasmic Reticulum Stress-dependent Autophagy and Apoptosis. Neuroscience 2023; 513:14-27. [PMID: 36549603 DOI: 10.1016/j.neuroscience.2022.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Enriched environment (EE) is effective in preventing cerebral ischemia-reperfusion (I/R) injury. However, little is known about the mechanism underlying the neuroprotection of EE preprocessing. Endoplasmic reticulum (ER) stress has been demonstrated to be extensively involved in I/R injury. We aimed to investigate the potential regulatory mechanism of ER stress in the neuroprotection of pre-ischemic EE. Rats were subjected to middle cerebral artery occlusion (MCAO) or sham surgery after 4 weeks of exposure in standard or enriched environments. We found that EE pretreatment alleviates acute neuronal injury after MCAO, as shown by reduced infarct volume and neurological deficit score. The expression of ER stress-related proteins, markers of autophagy, and apoptosis were detected to investigate the underlying mechanism. Our results showed that pre-ischemic EE inhibited the ER stress, as evidenced by the inactivation of activating transcription factor 6 (ATF6), protein kinase RNA (PKR)-like ER kinase (PERK), and inositol-requiring enzyme 1 (IRE1) pathways. Moreover, the rats reared in EE were detected with lower autophagic activity and apoptosis levels. The decrease in activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and phospho-c-Jun N-terminal kinases (p-JNK) expression suggested EE pretreatment might inhibit autophagy and apoptosis via modulating ER stress-mediated PERK-ATF4-CHOP and IRE1-JNK signal pathways, which provides a new idea for the prevention of the deleterious cerebral and functional consequences of ischemic stroke.
Collapse
|
7
|
Chen X, Liu L, Zhong Y, Liu Y. Enriched environment promotes post-stroke angiogenesis through astrocytic interleukin-17A. Front Behav Neurosci 2023; 17:1053877. [PMID: 36873773 PMCID: PMC9979086 DOI: 10.3389/fnbeh.2023.1053877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Objective Our previous studies have revealed that the protective effect of an enriched environment (EE) may be linked with astrocyte proliferation and angiogenesis. However, the relationship between astrocytes and angiogenesis under EE conditions still requires further study. The current research examined the neuroprotective effects of EE on angiogenesis in an astrocytic interleukin-17A (IL-17A)-dependent manner following cerebral ischemia/reperfusion (I/R) injury. Methods A rat model of ischemic stroke based on middle cerebral artery occlusion (MCAO) for 120 min followed by reperfusion was established, after which rats were housed in either EE or standard conditions. A set of behavior tests were conducted, including the modified neurological severity scores (mNSS) and the rotarod test. The infarct volume was evaluated by means of 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. To evaluate the levels of angiogenesis, the protein levels of CD34 were examined by means of immunofluorescence and western blotting, while the protein and mRNA levels of IL-17A, vascular endothelial growth factor (VEGF), and the angiogenesis-associated factors interleukin-6 (IL-6), JAK2, and STAT3 were detected by western blotting and real-time quantitative PCR (RT-qPCR). Results We found that EE promoted functional recovery, reduced infarct volume, and enhanced angiogenesis compared to rats in standard conditions. IL-17A expression in astrocytes was also increased in EE rats. EE treatment increased the levels of microvascular density (MVD) and promoted the expression of CD34, VEGF, IL-6, JAK2, and STAT3 in the penumbra, while the intracerebroventricular injection of the IL-17A-neutralizing antibody in EE rats attenuated EE-mediated functional recovery and angiogenesis. Conclusion Our findings revealed a possible neuroprotective mechanism of astrocytic IL-17A in EE-mediated angiogenesis and functional recovery after I/R injury, which might provide the theoretical basis for EE in clinical practise for stroke patients and open up new ideas for the research on the neural repair mechanism mediated by IL-17A in the recovery phase of stroke.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingling Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yingjun Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|