1
|
Vandendriessche B, Huyghebaert J, Rossem KV, Cremers TC, Man KD, Sieliwonczyk E, Boen H, Akdeniz D, Rabaut L, Schippers J, Ponsaerts P, Kooy RF, Loeys B, Schepers D, Alaerts M. An NGS-based approach for precise and footprint-free CRISPR-based gene editing in human stem cells. Methods 2025; 241:33-42. [PMID: 40373837 DOI: 10.1016/j.ymeth.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025] Open
Abstract
Precise gene editing with conventional CRISPR/Cas9 is often constrained by low knock-in (KI) efficiencies (≈ 2-20 %) in human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). This limitation typically necessitates labour-intensive manual isolation and genotyping of hundreds of colonies to identify correctly edited cells. Fluorescence- or antibiotic-based enrichment methods facilitate the identification process but can compromise cell viability and genomic integrity. Here, we present a footprint-free editing strategy that combines low-density seeding with next-generation sequencing (NGS) to rapidly identify cell populations containing precisely modified clones. By optimising the transfection workflow and adhering to CRISPR/Cas9 KI design principles, we achieved high average editing efficiencies of 64 % in hiPSCs (introducing a Brugada syndrome-associated variant) and 51 % in hESCs (introducing a neurodevelopmental disorder (NDD)-associated variant). Furthermore, under suboptimal CRISPR design conditions, this approach successfully identified hESC clones carrying a second NDD-associated variant, despite average KI efficiencies below 1 %. Importantly, genomic integrity was preserved throughout subcloning rounds, as confirmed by Sanger sequencing and single nucleotide polymorphism (SNP) array analysis. Hence, this NGS-based enrichment strategy reliably identifies desired KI clones under both optimal and challenging conditions, reducing the need for extensive colony screening and offering an effective alternative to fluorescence- and antibiotic-based selection methods.
Collapse
Affiliation(s)
- Bert Vandendriessche
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Jolien Huyghebaert
- Medical Genetics Research Group, Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Kirsten Van Rossem
- Medical Genetics Research Group, Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Tycho Canter Cremers
- Medical Genetics Research Group, Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Kevin De Man
- Medical Genetics Research Group, Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ewa Sieliwonczyk
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hanne Boen
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Dogan Akdeniz
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Laura Rabaut
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jolien Schippers
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Medical Genetics Research Group, Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Cardiogenomics Research Group, Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
2
|
Kumari G, Gupta P, Goswami SG, Jain R, Anand S, Biswas S, Garg S, Thakur P, Saravanakumar V, Arvinden VR, Goswami B, Bhowmick IP, Mohandas N, Burrows J, Ramalingam S, Singh S. CRISPR/Cas9-engineering of Kell null erythrocytes to unveil host targeted irresistible antimalarial. Commun Biol 2025; 8:730. [PMID: 40350476 PMCID: PMC12066708 DOI: 10.1038/s42003-025-07968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 03/19/2025] [Indexed: 05/14/2025] Open
Abstract
Malaria elimination faces challenges from drug resistance, stemming from mutations within the parasite's genetic makeup. Genetic adaptations in key erythrocyte proteins offer malaria protection in endemic regions. Emulating nature's approach, and implementing methodologies to render indispensable host proteins inactive, holds the potential to reshape antimalarial therapy. This study delves into the functional implication of the single-span membrane protein Kell ectodomain, which shares consensus sequence with the zinc endopeptidase family, possesses extracellular enzyme activity crucial for parasite invasion into host erythrocytes. Through generating Kell-null erythrocytes from an erythroid progenitor, BEL-A, we demonstrate the indispensable nature of Kell activity in P. falciparum invasion. Additionally, thiorphan, a metallo-endopeptidase inhibitor, which specifically inhibits Kell activity, inhibited Plasmodium infection at nanomolar concentrations. Interestingly, individuals in malaria-endemic regions exhibit low Kell expression and activity, indicating a plausible Plasmodium-induced evolutionary pressure. Both thiorphan and its prodrug racecadotril, demonstrated potent antimalarial activity in vivo, highlighting Kell's protease role in invasion and proposing thiorphan as a promising host-oriented antimalarial therapeutic.
Collapse
Affiliation(s)
- Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pragya Gupta
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam G Goswami
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priya Thakur
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinodh Saravanakumar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - V R Arvinden
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bidhan Goswami
- Agartala Government Medical college, Agartala, Tripura, India
| | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre, Northeast Region (RMRC-NE), Dibrugarh, Assam, India
- Model Rural Health Research Unit (MRHRU), Tripura, India
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, 310 E 67th St, New York, NY, 10065, USA
| | | | - Sivaprakash Ramalingam
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Biological Sciences and Bioengineering, Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Husser MC, Pham NP, Law C, Araujo FRB, Martin VJJ, Piekny A. Endogenous tagging using split mNeonGreen in human iPSCs for live imaging studies. eLife 2024; 12:RP92819. [PMID: 38652106 PMCID: PMC11037917 DOI: 10.7554/elife.92819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.
Collapse
Affiliation(s)
| | - Nhat P Pham
- Biology Department, Concordia University, Montreal, Canada
| | - Chris Law
- Biology Department, Concordia University, Montreal, Canada
- Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Canada
| | - Flavia R B Araujo
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| | - Vincent J J Martin
- Biology Department, Concordia University, Montreal, Canada
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| | - Alisa Piekny
- Biology Department, Concordia University, Montreal, Canada
- Center for Microscopy and Cellular Imaging, Concordia University, Montreal, Canada
- Center for Applied Synthetic Biology, Concordia University, Montreal, Canada
| |
Collapse
|
4
|
Gupta P, Goswami SG, Kumari G, Saravanakumar V, Bhargava N, Rai AB, Singh P, Bhoyar RC, Arvinden VR, Gunda P, Jain S, Narayana VK, Deolankar SC, Prasad TSK, Natarajan VT, Scaria V, Singh S, Ramalingam S. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat Commun 2024; 15:1794. [PMID: 38413594 PMCID: PMC10899644 DOI: 10.1038/s41467-024-46036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geeta Kumari
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vinodh Saravanakumar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Praveen Singh
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - V R Arvinden
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Vanya Kadla Narayana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sayali C Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Vivek T Natarajan
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res Ther 2022; 13:355. [PMID: 35883199 PMCID: PMC9327311 DOI: 10.1186/s13287-022-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.
Collapse
Affiliation(s)
- Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M Farry
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer L Peek
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mariana C Cabatu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Richard C Welch
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eddie S Qian
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|