1
|
Andersen LK, Abernathy JW, Farmer BD, Lange MD, Sankappa NM, McEntire ME, Rawles SD. Analysis of Striped Bass (Morone saxatilis) and White Bass (M. chrysops) Splenic Transcriptome Following Streptococcus iniae Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:51. [PMID: 39961922 DOI: 10.1007/s10126-025-10431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/07/2025] [Indexed: 04/25/2025]
Abstract
Streptococcal disease results in major mortality events of both marine and freshwater fishes worldwide. Streptococcus iniae is among the prominent causative bacterial strains as it has been found to cause a higher incidence of mortality and act as a zoonotic pathogen. Here, we examine the susceptibility of two important aquaculture species in the USA, striped bass (Morone saxatilis) and white bass (Morone chrysops) to S. iniae. A high incidence of mortality was observed in both species, although striped bass succumbed more rapidly than white bass. Spleen gene expression at three time points following infection was analyzed to further elucidate the mechanisms underlying these observations. The down-regulation of gene transcripts associated with pathogen detection (tlr1, tlr8, tlr9), antigen processing (cd74a), immune cell recruitment and migration (ccr6b, ccr7), macrophage function (csf1ra), T-cell signaling, and NF-kB activation (card11, fyna, tirap) was detected in both species. These findings potentially indicate impairment in these critical early immune system processes such that both species were ultimately highly susceptible to S. iniae infection despite the detected up-regulation of transcripts typically associated with effective immune response, such as cytokines (il1β, il8, il12b2, il17rc, tnfα) and hepcidins (hamp, hamp2). The presented results collectively identify several candidate genes and associated pathways for further investigation to characterize the vulnerability of striped bass and white bass to S. iniae and that may be considered for selective breeding efforts, biotechnological intervention, and/or exploitation in the development of vaccines and alternative treatments.
Collapse
Affiliation(s)
- Linnea K Andersen
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
| | - Jason W Abernathy
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA.
| | - Bradley D Farmer
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| | - Miles D Lange
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
| | - Nithin M Sankappa
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, 37830, USA
| | - Matthew E McEntire
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| | - Steven D Rawles
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| |
Collapse
|
2
|
Li P, Luo X, Zuo S, Fu X, Lin Q, Niu Y, Liang H, Ma B, Li N. Genome-Wide Association Study of Resistance to Largemouth Bass Ranavirus (LMBV) in Micropterus salmoides. Int J Mol Sci 2024; 25:10036. [PMID: 39337523 PMCID: PMC11432711 DOI: 10.3390/ijms251810036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.
Collapse
Affiliation(s)
- Pinhong Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Shaozhi Zuo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Baofu Ma
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| |
Collapse
|
3
|
Wang J, Yu X, Wu S, Jin C, Wang M, Ding H, Song S, Bao Z, Wang B, Hu J. Identification of candidate SNPs and genes associated with resistance to nervous necrosis virus in leopard coral grouper (Plectropomus leopardus) using GWAS. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109295. [PMID: 38101589 DOI: 10.1016/j.fsi.2023.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The leopard coral grouper (Plectropomus leopardus), which has become increasingly popular in consumption due to its bright body color and great nutritional, holds a high economic and breeding potential. However, in recent years, the P.leopardus aquaculture industry has been impeded by the nervous necrosis virus (NNV) outbreak, leading to widespread mortality among fry and juvenile grouper. However, the genetic basis of resistance to NNV in P. leopardus remains to be investigated. In the present study, we conducted a genome-wide association analysis (GWAS) on 100 resistant and 100 susceptible samples to discover variants and potential genes linked with NNV resistance. For this study, 157,926 high-quality single nucleotide polymorphisms (SNPs) based on whole genome resequencing were discovered, and eighteen SNPs loci linked to disease resistance were discovered. We annotated six relevant candidate genes, including sik2, herc2, pip5k1c, npr1, mybpc3, and arhgap9, which showed important roles in lipid metabolism, oxidative stress, and neuronal survival. In the brain tissues of resistant and susceptible groups, candidate genes against NNV infection showed significant differential expression. The results indicate that regulating neuronal survival or pathways involved in lipid metabolism may result in increased resistance to NNV. Understanding the molecular mechanisms that lead to NNV resistance will be beneficial for the growth of the P. leopardus breeding sector. Additionally, the identified SNPs could be employed as biomarkers of disease resistance in P. leopardus, which will facilitate the selective breeding of grouper.
Collapse
Affiliation(s)
- Jingwen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
| | - Xiaofei Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Siqi Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|