1
|
Rodolphi MS, Strogulski NR, Kopczynski A, Sartor M, Soares G, de Oliveira VG, Vinade L, Dal-Belo C, Portela JV, Geller CA, De Bastiani MA, Justus JS, Portela LOC, Smith DH, Portela LV. Nandrolone Abuse Prior to Head Trauma Mitigates Endoplasmic Reticulum Stress, Mitochondrial Bioenergetic Deficits, and Markers of Neurodegeneration. Mol Neurobiol 2025; 62:6951-6967. [PMID: 39313656 DOI: 10.1007/s12035-024-04488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
The abuse of synthetic steroids, such as nandrolone decanoate (ND), is often associated with violent behavior, increasing the risk of traumatic brain injury (TBI). After a TBI, proteins like APP, β-amyloid peptide-42 (Aβ42), and phosphorylated tau (pTau) accumulate and trigger endoplasmic reticulum (ER) stress associated with an unfolded protein response (UPR). The involvement of mitochondrial bioenergetics in this context remains unexplored. We interrogate whether the abuse of ND before TBI alters the responses of ER stress and mitochondrial bioenergetics in connection with neurodegeneration and memory processing in mice. Male CF1 adult mice were administered ND (15 mg/kg) or vehicle (VEH) s.c. for 19 days, coinciding with the peak day of aggressive behavior, and then underwent cortical controlled impact (CCI) or sham surgery. Spatial memory was assessed through the Morris water maze task (MWM) post-TBI. In synaptosome preparations, i) we challenged mitochondrial complexes (I, II, and V) in a respirometry assay, employing metabolic substrates, an uncoupler, and inhibitors; and ii) assessed molecular biomarkers through Western blot. TBI significantly increased APP, Aβ42, and pTauSer396 levels, along with ER-stress proteins, GRP78, ATF6, and CHOP, implying it primed apoptotic signaling. Concurrently, TBI reduced mitochondrial Ca2+ efflux in exchange with Na+, disturbed the formation/dissipation of membrane potential, increased H2O2 production, decreased biogenesis (PGC-1⍺ and TOM20), and ATP biosynthesis coupled with oxygen consumption. Unexpectedly, ND abuse before TBI attenuated the elevations in APP, Aβ42, and pTauSer396, accompanied by a decrease in GRP78, ATF6, and CHOP levels, and partial normalization of mitochondrial-related endpoints. A principal component analysis revealed a key hierarchical signature featuring mitochondrial Ca2+ efflux, CHOP, GRP78, TOM20, H2O2, and bioenergetic efficiency as a unique variable (PC1) able to explain the memory deficits caused by TBI, as well as the preservation of memory fitness induced by prior ND abuse.
Collapse
Affiliation(s)
- Marcelo S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Leinster, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Monia Sartor
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Gabriela Soares
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Vitoria G de Oliveira
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Lucia Vinade
- Laboratory of Neurobiology and Toxinology (LANETOX), Universidade Federal Do Pampa (UNIPAMPA), São Gabriel, RS, Brazil
| | - Chariston Dal-Belo
- Laboratory of Neurobiology and Toxinology (LANETOX), Universidade Federal Do Pampa (UNIPAMPA), São Gabriel, RS, Brazil
- Departamento Multidisciplinar - Escola Paulista de Política, Economia E Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Osasco, SP, Brazil
| | - Juliana V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Cesar A Geller
- Laboratory of Performance in Simulated Environment (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Marco A De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jijo S Justus
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Luiz Osorio C Portela
- Laboratory of Performance in Simulated Environment (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis V Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Universidade Federal Do Rio Grande Do Sul, UFRGS, Anexo, Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
2
|
Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: Modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol 2024; 38:e23636. [PMID: 38229314 DOI: 10.1002/jbt.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Erzurumlu Y, Muhammed MT. Triiodothyronine positively regulates endoplasmic reticulum-associated degradation (ERAD) and promotes androgenic signaling in androgen-dependent prostate cancer cells. Cell Signal 2023:110745. [PMID: 37271348 DOI: 10.1016/j.cellsig.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. While the effects of T3 on ERAD and UPR are unknown today, the impact on androgenic signaling is still not understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data strongly indicated that T3 tightly regulates ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 stimulates androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| |
Collapse
|
4
|
Erzurumlu Y, Kubra Dogan H, Cataklı D. Dexamethasone-stimulated glucocorticoid receptor signaling positively regulates the endoplasmic reticulum-associated degradation (ERAD) mechanism in hepatocellular carcinoma cells. Steroids 2023; 195:109238. [PMID: 37044236 DOI: 10.1016/j.steroids.2023.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hepatocellular carcinoma is one of the most common types of primary liver cancer in adults and also it is the third leading cause of cancer-related deaths worldwide. Although there are various treatment options such as surgery, radiation, targeted drug therapy, immunotherapy and chemotherapy, most hepatocellular carcinomas are highly resistant to systemic treatments. Today, the molecular pathogenesis of hepatocellular carcinoma remains largely obscure. Therefore, there is a need for detailed research for the characterization of molecular signaling networks related to the development of hepatocellular carcinoma. Recent studies have attention to the hormonal regulation of hepatocellular carcinoma cells mediated by systemic hormones such as glucocorticoids. However, glucocorticoid-mediated regulation of endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR), which are known to be important survival mechanisms for cancer cells remains unknown in hepatocellular carcinoma. In the present study, we showed that dexamethasone-induced glucocorticoid receptor signaling mediated advanced regulation of ERAD and UPR signaling in hepatocellular carcinoma cells. Glucocorticoid signaling positively regulates mRNA and protein levels of ERAD components and also protein kinase RNA-like ER Kinase (PERK) and inositol-requiring enzyme 1⍺ (IRE1⍺) branches of UPR signaling are accompanied the glucocorticoid signaling. In addition, putative glucocorticoid response elements (GREs) were determined in the promoter regions of ERAD members in in-silico analyses. Additionally, silencing of ERAD components significantly reduced the tumorigenic features of hepatocellular carcinoma cells, including cell proliferation, metastasis, invasion and 3D tumor formation. Collectively, these results reveal a novel pattern of regulation of ERAD components by glucocorticoid-mediated in human hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Deniz Cataklı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
5
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|