1
|
Czerniak T, Saenz JP. Effects of lipid membranes on RNA catalytic activity and stability. Biol Cell 2025; 117:e202400115. [PMID: 40012228 PMCID: PMC11865690 DOI: 10.1111/boc.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
BACKGOUND INFORMATION RNA plays crucial roles in cellular organization and metabolism, and modulating its activity is essential for maintaining cellular functions. RNA activity, involving both catalytic (ribozymes) and translation processes, is controlled via myriad mechanisms involving different binding partners such as proteins and smaller polar solutes. We previously reported that lipid membranes can directly interact with the artificial R3C ribozyme changing its activity, however, the effect of lipids on naturally occurring ribozymes remains unknown. RESULTS Here, we report that both catalytic activity as well as RNA integrity can be controlled by the presence of different lipid membranes. Gel-phase lipid membranes decreased the activity of hepatitis delta virus ribozyme and increased the activity of a hammerhead ribozyme. The presence of lipid liquid membrane surfaces triggered RNA degradation with greater degradation occurring in the single-stranded regions of RNA. CONCLUSION The interplay between RNA activity and stability in the presence of different lipid membranes introduces multiple possibilities, where different combinations of ribozyme and lipid membrane composition could produce different effects on activity. SIGNIFICANCE Taken together, these observations support the hypothesis that the activity of both natural and artificial RNAs can be modulated by lipid membranes which, in turn, provides a foundation for the development of novel riboswitch-like molecules, and lipid membrane-based RNA-biosensors.
Collapse
Affiliation(s)
- Tomasz Czerniak
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - James P. Saenz
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
- Faculty of MedicineTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Jiménez-Ramírez IA, Castaño E. Non-coding RNAs in the pathogenesis of Alzheimer's disease: β-amyloid aggregation, Tau phosphorylation and neuroinflammation. Mol Biol Rep 2025; 52:183. [PMID: 39890684 DOI: 10.1007/s11033-025-10284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder primarily affecting individuals aged 65 and older, characterized by cognitive decline and diminished quality of life. The molecular hallmarks of AD include extracellular β-amyloid plaques, intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein, and chronic neuroinflammation. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as potential therapeutic targets due to their regulatory roles in AD pathogenesis. For example, miR-124 has been shown to modulate Aβ levels, while lncRNAs such as BACE1-AS regulate the expression of BACE1, a crucial enzyme in Aβ production. Transcriptomic studies of AD patients have revealed dysregulation of ncRNA expression, further supporting their involvement in disease progression. This review examines the regulatory functions of ncRNAs in AD, focusing on their impact on Aβ, tau hyperphosphorylation, and neuroinflammation. Additionally, we discuss the emerging role of ncRNAs in liquid-liquid phase separation and the formation of protein aggregates, key processes contributing to AD pathology.
Collapse
Affiliation(s)
- Irma A Jiménez-Ramírez
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Enrique Castaño
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 No. 130 X 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
3
|
Miladinović A, Antiga L, Venit T, Bayona-Hernandez A, Červenka J, Labala RK, Kolář M, Castaño E, Sztacho M, Hozák P. The perinucleolar compartment and the oncogenic super-enhancers are part of the same phase-separated structure filled with phosphatidylinositol 4,5-bisphosphate and long non-coding RNA HANR. Adv Biol Regul 2025; 95:101069. [PMID: 39648081 DOI: 10.1016/j.jbior.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The liquid-liquid phase separation in the cell nucleus regulates various processes such as gene regulation and transcription control, chromatin organization, and DNA repair. A plethora of proteins and RNAs contribute to the formation of biomolecular condensates and recently, several nuclear phosphoinositides were shown to be a part of these membrane-less complexes within the nucleus as well. Here we lipid-interacting RNA sequencing (LIPRNAseq) and confocal microscopy to uncover the RNA-binding capacity and localization of phosphatidylinositol 4,5 bisphosphate (PIP2). We discovered the consensus PIP2-binding AU-rich RNA motif and identified long non-coding RNA HANR (lncHANR) to colocalize with PIP2 in the proximity to the nucleolus in the perinucleolar compartment (PNC). Colocalization studies with different nuclear markers reveal that PIP2-HANR presence in the PNC correlates with oncogenic super-enhancers, and both PNC and oncogenic enhancers are part of the same structure. As lncHANR, PNC, and oncogenic super-enhancers are associated with cancer cell lines and tumors, we suggest that they can serve as interchangeable prognostic markers. Understanding of the interplay between lipid metabolism, and lncRNAs in subnuclear compartment phase separation can lead to future improvement in treatment strategies and personalized cancer management approaches.
Collapse
Affiliation(s)
- Ana Miladinović
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Venit
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Bayona-Hernandez
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, Mexico
| | - Jakub Červenka
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Rajendra Kumar Labala
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Enrique Castaño
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, Mérida, Yucatán, CP 97205, Mexico
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Sztacho M, Červenka J, Šalovská B, Antiga L, Hoboth P, Hozák P. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. PLoS Genet 2024; 20:e1011462. [PMID: 39621780 DOI: 10.1371/journal.pgen.1011462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024] Open
Abstract
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
Collapse
Affiliation(s)
- Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, Connecticut, United States of America
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Liu H, Hu K, O’Connor K, Kelliher MA, Zhu LJ. CleanUpRNAseq: An R/Bioconductor Package for Detecting and Correcting DNA Contamination in RNA-Seq Data. BIOTECH 2024; 13:30. [PMID: 39189209 PMCID: PMC11348166 DOI: 10.3390/biotech13030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024] Open
Abstract
RNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility. However, existing tools capable of correcting gDNA contamination are limited and lack thorough evaluation. To fill the gap, we developed CleanUpRNAseq, which offers a comprehensive set of functionalities for identifying and correcting gDNA-contaminated RNA-seq data. Our package offers three correction methods for unstranded RNA-seq data and a dedicated approach for stranded data. Through rigorous validation on published RNA-seq datasets with known levels of gDNA contamination and real-world RNA-seq data, we demonstrate CleanUpRNAseq's efficacy in detecting and correcting detrimental levels of gDNA contamination across diverse library protocols. CleanUpRNAseq thus serves as a valuable tool for post-alignment quality assessment of RNA-seq data and should be integrated into routine workflows for RNA-seq data analysis. Its incorporation into OneStopRNAseq should significantly bolster the accuracy of gene expression quantification and differential expression analysis of RNA-seq data.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Kevin O’Connor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; (H.L.); (K.H.); (M.A.K.)
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Janas T, Sapoń K, Janas T. Selection of bifunctional RNAs with specificity for arginine and lipid membranes. FEBS Lett 2024; 598:1061-1079. [PMID: 38649155 DOI: 10.1002/1873-3468.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biology, University of Opole, Poland
| | | | | |
Collapse
|