1
|
Peng Y, Tao H, Liu D, Tang D, Wen C, Wu M, Xu T, Wang G, Zheng X, Dai Y. Comprehensive analysis of eccDNA characteristics and associated genes expression in peripheral blood of ASLE and ISLE patients. Epigenetics 2025; 20:2477903. [PMID: 40108975 PMCID: PMC11926905 DOI: 10.1080/15592294.2025.2477903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/09/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
To explore SLE staging markers, we analyzed eccDNA in plasma using circular sequencing, comparing healthy controls (HC), active SLE (ASLE), and inactive SLE (ISLE) patients. We found higher eccDNA levels and lower GC content in ASLE and ISLE compared to healthy controls, with a negative correlation between GC content and anti-daDNA, C3, and C4 levels in SLE and HC samples. Differential expression of exon-derived eccGenes in ASLE and ISLE suggests their role in SLE development, with KEGG analysis showing enrichment in SLE-related pathways for these differentially expressed genes. By protein-protein interactions network analysis we found 9 exon-derived eccGenes that were significantly differentially expressed and scored high in both ISLE-HC and ASLE-ISLE as diagnostic criteria for differentiating different disease stages of SLE. In conclusion, the present study reveals that eccDNA length GC content as well as chromosomal distribution in ASLE, ISLE and HC suggests that with eccDNA is associated with the creation of SLE, suggesting GC count of eccDNA as a diagnostic marker for systemic lupus erythematosus. Significant changes in the abundance of eccDNA-related genes from exons such as SOS1, GAD2, BCL11B, PPT1, and GCNT3 were observed in ISLE as compared to ASLE and HC groups and were significantly correlated with SLEDAI-2K. This suggests that these exon-derived eccGenes may play a role in the development and progression of the disease. Consequently, the abundance levels of these exon-derived eccGenes could potentially assist in distinguishing different stages of SLE, beyond a confirmed diagnosis, thus serving as possible biomarkers for the condition.
Collapse
Affiliation(s)
- Yali Peng
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science & Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science & Technology, Huainan, China
| | - Dongzhou Liu
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Donger Tang
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Tiantian Xu
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Guoying Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, China
| | - Xuejia Zheng
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Yong Dai
- School of Medicine, Anhui University of Science & Technology, Huainan, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science & Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science & Technology, Huainan, China
- Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Shenzhen People 's Hospital, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
2
|
Huang B, Guo F, Chen J, Lu L, Gao S, Yang C, Wu H, Luo W, Pan Q. Regulation of B-cell function by miRNAs impacting Systemic lupus erythematosus progression. Gene 2025; 933:149011. [PMID: 39427831 DOI: 10.1016/j.gene.2024.149011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease marked by abnormal B-cell proliferation and increased autoantibodies. miRNAs play a crucial role in regulating B-cell dysfunction and SLE pathology. miRNAs influence DNA methylation, B-cell activation, and gene expression, contributing to SLE pathogenesis. miRNAs impact B cells through key processes like proliferation, differentiation, tolerance, and apoptosis. miRNAs also exacerbate inflammation and immune responses by modulating Interleukin 4 (IL-4), IL-6, and interferon cytokines. Autophagy, a key degradation mechanism, is also regulated by specific miRNAs that impact SLE pathology. This article explores the role of multiple miRNAs in regulating B-cell development, proliferation, survival, and immune responses, influencing SLE pathogenesis. miRNAs like miR-23a, the miR-17 ∼ 92 family, and miR-125b/miR-221 affect B-cell development by regulating transcription factors, signaling pathways, and cell cycle genes. miRNAs such as miR-181a-5p and miR-23a-5p are differentially regulated across developmental stages, emphasizing their complex regulatory roles in B-cell biology. This article synthesizes miRNA-B cell interactions to offer new strategies and directions for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Bitang Huang
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Fengbiao Guo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiaxuan Chen
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Lu
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Shenglan Gao
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Han Wu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Wenying Luo
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Qingjun Pan
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
3
|
ElFeky DS, Omar NM, Shaker OG, Abdelrahman W, Gheita TA, Nada MG. Circulatory microRNAs and proinflammatory cytokines as predictors of lupus nephritis. Front Immunol 2024; 15:1449296. [PMID: 39464895 PMCID: PMC11502402 DOI: 10.3389/fimmu.2024.1449296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Lupus nephritis (LN) is one of the most prevalent severe organ manifestations of systemic lupus erythematosus (SLE), impacting 70% of SLE patients. MicroRNAs (miRNAs), are small non-coding RNA molecules which influence the expression of approximately one-third of human genes after the process of transcription. Dysregulation of miRNAs was documented in numerous disorders, including SLE and LN. Cytokines are the orchestrators of the immune response in autoimmune diseases. Our study aims to explore the variation in the levels of circulating miRNAs and proinflammatory cytokines as potential diagnostic biomarkers among LN and SLE patients without LN in comparison to controls. Methods The study involved 20 LN patients, 20 SLE patients without LN, and 10 healthy controls. Serum levels of IL-12 and IL-21 in addition to miR-124, miR-146a, miR-199a, and miR-21 were assessed using the enzyme-linked immunosorbent assay (ELISA) for cytokines and quantitative real-time PCR for miRNAs. Results A significant downregulation in miR-124 (p<0.001) and a significant overexpression of miR-146a (p=0.005) were found in SLE patients without LN in comparison to controls. In comparison to SLE patients without LN and the control group, miR-199a, miR-21, and miR-146a were significantly upregulated in LN patients (p=<0.001) with high diagnostic values of these miRNAs in discriminating LN from SLE patients without LN according to Receiver operating curve (ROC) analysis. Logistic regression analysis revealed that only miR-199a is an independent predictor of LN (OR 1.69; 95% CI: 1.1-2.6). The expression of miR-124 was reduced in LN patients in comparison to the control but increased in LN patients in comparison to SLE patients without LN. However, there was no statistically significant difference in either scenario. In comparison to both SLE patients without LN and controls, LN patients exhibited the highest serum levels of IL-12 and IL-21, with no statistically significant difference. Regression analysis revealed that only miR-146a was associated with creatinine levels and SLEDAI score (p= 0.009 and 0.03, respectively), while miR-124 was associated with hemoglobin level (p=0.03). Conclusion MiR-199a is an independent predictor for LN and might be used as a diagnostic biomarker for this disease. MiR-146a might play an important role in LN pathophysiology.
Collapse
Affiliation(s)
- Dalia Saad ElFeky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo
University, Cairo, Egypt
| | - Noha Mohamed Omar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo
University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walaa Abdelrahman
- Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tamer A. Gheita
- Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Gamal Nada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo
University, Cairo, Egypt
| |
Collapse
|
4
|
Qin H, Chen S, Liu X, Liang J, Wu H, Zhu X. miR-132-3p downregulates FOXO1 in CD4 + T cells and is associated with disease manifestations in patients with lupus. J Int Med Res 2024; 52:3000605241286762. [PMID: 39429035 PMCID: PMC11494630 DOI: 10.1177/03000605241286762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression status of miR-132-3p in CD4+ T cells in patients with systemic lupus erythematosus (SLE) and explore its potential role in SLE development. METHODS The study included 60 patients with SLE and 30 healthy controls. miR-132-3p expression in CD4+ T cells was detected by real-time quantitative reverse transcription polymerase chain. Bioinformatics analyses were employed to predict target genes and explore the potential role of miR-132-3p. The associations between miR-132-3p levels and SLE Disease Activity Index (SLEDAI) score, as well as laboratory characteristics, were analyzed. RESULTS miR-132-3p levels in CD4+ T cells were significantly higher in patients with SLE compared with healthy controls. Bioinformatics analysis identified FOXO1 as a potential target gene of miR-132-3p, with a particular emphasis on the FOXO signaling pathway. miR-132-3p up-regulation in CD4+ T cells was associated with high SLEDAI score, high anti-double-stranded DNA levels, low C3 and C4 levels, positive anti-ribosomal P, and high 24-hour urinary protein levels in patients with SLE. CONCLUSIONS miR-132-3p may contribute to CD4+ T cell dysregulation during SLE by targeting FOXO1 and could potentially be used to assess disease severity.
Collapse
Affiliation(s)
| | | | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Litwiniuk-Kosmala M, Makuszewska M, Niemczyk K, Bartoszewicz R, Wojtas B, Gielniewski B. Small RNA Deep Sequencing Uncovers microRNAs Associated with Hearing Loss in Vestibular Schwannoma. Laryngoscope 2024; 134:3778-3785. [PMID: 38459949 DOI: 10.1002/lary.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE To analyze the correlation between the miRNA expression profile in vestibular schwannoma (VS) tumor tissue and preoperative patient's hearing status, using the RNA-seq technique. METHODS Nineteen tumor samples were collected from patients operated for VS in a Tertiary Academic Center. Samples were classified into "good hearing" and "poor hearing" study group based on the results of audiometric studies. Tumor miRNA expression was analyzed using high-throughput RNA sequencing (RNA-seq) technique, using NovaSeq 6000 Illumina system. Functional analysis was performed with the use of DIANA miRpath v. 4.0 online tool. RESULTS The most overexpressed miRNAs in VS samples derived from poor hearing patients belonged to miR 449a/b, miR 15/16-1, and hypoxamiR families. Functional analysis showed that the differentially expressed miRNAs regulate cellular pathways associated with hypoxia, adherence junction functions, and signaling pathways such as Hippo, FOXO, MAPK, and Wnt signaling pathway. CONCLUSION Our study identified a specific miRNA expression profile in VS tumor tissues that correlates with hearing impairment. These results suggest potential new molecular mechanisms related to hearing loss in the course of VS. LEVEL OF EVIDENCE 3 (cohort study) Laryngoscope, 134:3778-3785, 2024.
Collapse
Affiliation(s)
| | - Maria Makuszewska
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Robert Bartoszewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
6
|
Al-Haidose A, Hassan S, Elhassan M, Ahmed E, Al-Riashi A, Alharbi YM, Ghunaim M, Alhejaili T, Abdallah AM. Role of ncRNAs in the Pathogenesis of Sjögren's Syndrome. Biomedicines 2024; 12:1540. [PMID: 39062113 PMCID: PMC11274537 DOI: 10.3390/biomedicines12071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome is a multisystemic autoimmune disease that mainly affects the exocrine glands, causing dryness of the eyes and the mouth as the principal symptoms. Non-coding RNAs (ncRNAs), once regarded as genomic "junk", are now appreciated as important molecular regulators of gene expression, not least in Sjögren's syndrome and other autoimmune diseases. Here we review research into the causative roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on immunological responses, inflammation, and salivary gland epithelial cell function in Sjögren's syndrome patients. These ncRNAs represent promising new therapeutic targets for treating the disease and possibly as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Sondoss Hassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Mahmoud Elhassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Eiman Ahmed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Abdulla Al-Riashi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Yazeed M. Alharbi
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Monther Ghunaim
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Talal Alhejaili
- Department of Gastroenterology, King Salman Medical City, Madinah 42319, Saudi Arabia;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| |
Collapse
|
7
|
Zhang B, Mei X, Zhao M, Lu Q. The new era of immune skin diseases: Exploring advances in basic research and clinical translations. J Transl Autoimmun 2024; 8:100232. [PMID: 39022635 PMCID: PMC11252396 DOI: 10.1016/j.jtauto.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
8
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|