1
|
Zaman A, Yassin MM, Mehmud I, Cao A, Lu J, Hassan H, Kang Y. Challenges, optimization strategies, and future horizons of advanced deep learning approaches for brain lesion segmentation. Methods 2025:S1046-2023(25)00113-6. [PMID: 40306473 DOI: 10.1016/j.ymeth.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Brain lesion segmentation is challenging in medical image analysis, aiming to delineate lesion regions precisely. Deep learning (DL) techniques have recently demonstrated promising results across various computer vision tasks, including semantic segmentation, object detection, and image classification. This paper offers an overview of recent DL algorithms for brain tumor and stroke segmentation, drawing on literature from 2021 to 2024. It highlights the strengths, limitations, current research challenges, and unexplored areas in imaging-based brain lesion classification based on insights from over 250 recent review papers. Techniques addressing difficulties like class imbalance and multi-modalities are presented. Optimization methods for improving performance regarding computational and structural complexity and processing speed are discussed. These include lightweight neural networks, multilayer architectures, and computationally efficient, highly accurate network designs. The paper also reviews generic and latest frameworks of different brain lesion detection techniques and highlights publicly available benchmark datasets and their issues. Furthermore, open research areas, application prospects, and future directions for DL-based brain lesion classification are discussed. Future directions include integrating neural architecture search methods with domain knowledge, predicting patient survival levels, and learning to separate brain lesions using patient statistics. To ensure patient privacy, future research is anticipated to explore privacy-preserving learning frameworks. Overall, the presented suggestions serve as a guideline for researchers and system designers involved in brain lesion detection and stroke segmentation tasks.
Collapse
Affiliation(s)
- Asim Zaman
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Mazen M Yassin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Irfan Mehmud
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China; Institute of Urology, South China Hospital, Medicine School, Shenzhen University, Shenzhen 518000, China
| | - Anbo Cao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China
| | - Jiaxi Lu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China
| | - Haseeb Hassan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Kang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China; School of Applied Technology, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
2
|
Rezk NG, Alshathri S, Sayed A, Hemdan EED, El-Behery H. Secure Hybrid Deep Learning for MRI-Based Brain Tumor Detection in Smart Medical IoT Systems. Diagnostics (Basel) 2025; 15:639. [PMID: 40075886 PMCID: PMC11898425 DOI: 10.3390/diagnostics15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Brain tumors are among the most aggressive diseases, significantly contributing to human mortality. Typically, the classification of brain tumors is performed through a biopsy, which is often delayed until brain surgery is necessary. An automated image classification technique is crucial for accelerating diagnosis, reducing the need for invasive procedures and minimizing the risk of manual diagnostic errors being made by radiologists. Additionally, the security of sensitive MRI images remains a major concern, with robust encryption methods required to protect patient data from unauthorized access and breaches in Medical Internet of Things (MIoT) systems. Methods: This study proposes a secure and automated MRI image classification system that integrates chaotic and Arnold encryption techniques with hybrid deep learning models using VGG16 and a deep neural network (DNN). The methodology ensures MRI image confidentiality while enabling the accurate classification of brain tumors and not compromising performance. Results: The proposed system demonstrated a high classification performance under both encryption scenarios. For chaotic encryption, it achieved an accuracy of 93.75%, precision of 94.38%, recall of 93.75%, and an F-score of 93.67%. For Arnold encryption, the model attained an accuracy of 94.1%, precision of 96.9%, recall of 94.1%, and an F-score of 96.6%. These results indicate that encrypted images can still be effectively classified, ensuring both security and diagnostic accuracy. Conclusions: The proposed hybrid deep learning approach provides a secure, accurate, and efficient solution for brain tumor detection in MIoT-based healthcare applications. By encrypting MRI images before classification, the system ensures patient data confidentiality while maintaining high diagnostic performance. This approach can empower radiologists and healthcare professionals worldwide, enabling early and secure brain tumor diagnosis without the need for invasive procedures.
Collapse
Affiliation(s)
- Nermeen Gamal Rezk
- Department of Computer and Systems Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (N.G.R.); (H.E.-B.)
| | - Samah Alshathri
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amged Sayed
- Department of Electrical Energy Engineering, College of Engineering & Technology, Arab Academy for Science Technology & Maritime Transport, Smart Village Campus, Giza 12577, Egypt
- Industrial Electronics and Control Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menoufia 32952, Egypt
| | - Ezz El-Din Hemdan
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menoufia 32952, Egypt;
- Structure and Materials Research Lab, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Heba El-Behery
- Department of Computer and Systems Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (N.G.R.); (H.E.-B.)
| |
Collapse
|
3
|
Ali RR, Yaacob NM, Alqaryouti MH, Sadeq AE, Doheir M, Iqtait M, Rachmawanto EH, Sari CA, Yaacob SS. Learning Architecture for Brain Tumor Classification Based on Deep Convolutional Neural Network: Classic and ResNet50. Diagnostics (Basel) 2025; 15:624. [PMID: 40075870 PMCID: PMC11898819 DOI: 10.3390/diagnostics15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Accurate classification of brain tumors in medical images is vital for effective diagnosis and treatment planning, which improves the patient's survival rate. In this paper, we investigate the application of Convolutional Neural Networks (CNN) as a powerful tool for enhancing diagnostic accuracy using a Magnetic Resonance Imaging (MRI) dataset. Method: This study investigates the application of CNNs for brain tumor classification using a dataset of Magnetic Resonance Imaging (MRI) with a resolution of 200 × 200 × 1. The dataset is pre-processed and categorized into three types of tumors: Glioma, Meningioma, and Pituitary. The CNN models, including the Classic layer architecture and the ResNet50 architecture, are trained and evaluated using an 80:20 training-testing split. Results: The results reveal that both architectures accurately classify brain tumors. Classic layer architecture achieves an accuracy of 94.55%, while the ResNet50 architecture surpasses it with an accuracy of 99.88%. Compared to previous studies and 99.34%, our approach offers higher precision and reliability, demonstrating the effectiveness of ResNet50 in capturing complex features. Conclusions: The study concludes that CNNs, particularly the ResNet50 architecture, exhibit effectiveness in classifying brain tumors and hold significant potential in aiding medical professionals in accurate diagnosis and treatment planning. These advancements aim to further enhance the performance and practicality of CNN-based brain tumor classification systems, ultimately benefiting healthcare professionals and patients. For future research, exploring transfer learning techniques could be beneficial. By leveraging pre-trained models on large-scale datasets, researchers can utilize knowledge from other domains to improve brain tumor classification tasks, particularly in scenarios with limited annotated data.
Collapse
Affiliation(s)
- Rabei Raad Ali
- Technical Engineering College for Computer and AI, Northern Technical University, Mosul 41000, Iraq;
| | - Noorayisahbe Mohd Yaacob
- Center for Software Technology and Management (SOFTAM), Faculty of Information Science and Technology, University Kebangsaan Malaysia (UKM), Selangor 43600, Malaysia
| | - Marwan Harb Alqaryouti
- Department of English Language-Literature and Translation, Zarqa University, Zarqa 13110, Jordan; (M.H.A.); (A.E.S.)
| | - Ala Eddin Sadeq
- Department of English Language-Literature and Translation, Zarqa University, Zarqa 13110, Jordan; (M.H.A.); (A.E.S.)
| | - Mohamed Doheir
- Department of Technology Management, Universiti Teknikal Malaysia Melaka, Malacca 76100, Malaysia
| | - Musab Iqtait
- Department of Data Science and Artificial Intelligence, Zarqa University, Zarqa 13110, Jordan;
| | - Eko Hari Rachmawanto
- Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia; (E.H.R.); (C.A.S.)
| | - Christy Atika Sari
- Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia; (E.H.R.); (C.A.S.)
| | - Siti Salwani Yaacob
- Department of Computer Science, Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang 26600, Malaysia;
| |
Collapse
|
4
|
Amjad U, Raza A, Fahad M, Farid D, Akhunzada A, Abubakar M, Beenish H. Context aware machine learning techniques for brain tumor classification and detection - A review. Heliyon 2025; 11:e41835. [PMID: 39906822 PMCID: PMC11791217 DOI: 10.1016/j.heliyon.2025.e41835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
Background Machine learning has tremendous potential in acute medical care, particularly in the field of precise medical diagnosis, prediction, and classification of brain tumors. Malignant gliomas, due to their aggressive growth and dismal prognosis, stand out among various brain tumor types. Recent advancements in understanding the genetic abnormalities that underlie these tumors have shed light on their histo-pathological and biological characteristics, which support in better classification and prognosis. Objectives This review aims to predict gene alterations and establish structured correlations among various tumor types, extending the prediction of genetic mutations and structures using the latest machine learning techniques. Specifically, it focuses on multi-modalities of Magnetic Resonance Imaging (MRI) and histopathology, utilizing Convolutional Neural Networks (CNN) for image processing and analysis. Methods The review encompasses the most recent developments in MRI, and histology image processing methods across multiple tumor classes, including Glioma, Meningioma, Pituitary, Oligodendroglioma, and Astrocytoma. It identifies challenges in tumor classification, segmentation, datasets, and modalities, employing various neural network architectures. A competitive analysis assesses the performance of CNN. Furthermore it also implies K-MEANS clustering to predict Genetic structure, Genes Clusters prediction and Molecular Alteration of various types and grades of tumors e.g. Glioma, Meningioma, Pituitary, Oligodendroglioma, and Astrocytoma. Results CNN and KNN structures, with their ability to extract highlights in image-based information, prove effective in tumor classification and segmentation, surmounting challenges in image analysis. Competitive analysis reveals that CNN and outperform others algorithms on publicly available datasets, suggesting their potential for precise tumor diagnosis and treatment planning. Conclusion Machine learning, especially through CNN and SVM algorithms, demonstrates significant potential in the accurate diagnosis and classification of brain tumors based on imaging and histo-pathological data. Further advancements in this area hold promise for improving the accuracy and efficiency of intra-operative tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Usman Amjad
- NED University of Engineering and Technology, Karachi, Pakistan
| | - Asif Raza
- Sir Syed University of Engineering and Technology, Karachi, Pakistan
| | - Muhammad Fahad
- Karachi Institute of Economics and Technology, Karachi, Pakistan
| | | | - Adnan Akhunzada
- College of Computing and IT, University of Doha for Science and Technology, Qatar
| | - Muhammad Abubakar
- Muhammad Nawaz Shareef University of Engineering and Technology, Multan, Pakistan
| | - Hira Beenish
- Karachi Institute of Economics and Technology, Karachi, Pakistan
| |
Collapse
|
5
|
Buttar AM, Shaheen Z, Gumaei AH, Mosleh MAA, Gupta I, Alzanin SM, Akbar MA. Enhanced neurological anomaly detection in MRI images using deep convolutional neural networks. Front Med (Lausanne) 2024; 11:1504545. [PMID: 39802885 PMCID: PMC11717658 DOI: 10.3389/fmed.2024.1504545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Neurodegenerative diseases, including Parkinson's, Alzheimer's, and epilepsy, pose significant diagnostic and treatment challenges due to their complexity and the gradual degeneration of central nervous system structures. This study introduces a deep learning framework designed to automate neuro-diagnostics, addressing the limitations of current manual interpretation methods, which are often time-consuming and prone to variability. Methods We propose a specialized deep convolutional neural network (DCNN) framework aimed at detecting and classifying neurological anomalies in MRI data. Our approach incorporates key preprocessing techniques, such as reducing noise and normalizing image intensity in MRI scans, alongside an optimized model architecture. The model employs Rectified Linear Unit (ReLU) activation functions, the Adam optimizer, and a random search strategy to fine-tune hyper-parameters like learning rate, batch size, and the number of neurons in fully connected layers. To ensure reliability and broad applicability, cross-fold validation was used. Results and discussion Our DCNN achieved a remarkable classification accuracy of 98.44%, surpassing well-known models such as ResNet-50 and AlexNet when evaluated on a comprehensive MRI dataset. Moreover, performance metrics such as precision, recall, and F1-score were calculated separately, confirming the robustness and efficiency of our model across various evaluation criteria. Statistical analyses, including ANOVA and t-tests, further validated the significance of the performance improvements observed with our proposed method. This model represents an important step toward creating a fully automated system for diagnosing and planning treatment for neurological diseases. The high accuracy of our framework highlights its potential to improve diagnostic workflows by enabling precise detection, tracking disease progression, and supporting personalized treatment strategies. While the results are promising, further research is necessary to assess how the model performs across different clinical scenarios. Future studies could focus on integrating additional data types, such as longitudinal imaging and multimodal techniques, to further enhance diagnostic accuracy and clinical utility. These findings mark a significant advancement in applying deep learning to neuro-diagnostics, with promising implications for improving patient outcomes and clinical practices.
Collapse
Affiliation(s)
- Ahmed Mateen Buttar
- Department of Computer Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zubair Shaheen
- Department of Computer Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdu H. Gumaei
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mogeeb A. A. Mosleh
- Faculty of Engineering and Information Technology, Taiz University, Taiz, Yemen
- Faculty of Engineering and Computing, University of Science and Technology, Aden, Yemen
| | - Indrajeet Gupta
- School of Computer Science & AI SR University, Warangal, Telangana, India
| | - Samah M. Alzanin
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | |
Collapse
|
6
|
Younis EMG, Mahmoud MN, Albarrak AM, Ibrahim IA. A Hybrid Deep Learning Model with Data Augmentation to Improve Tumor Classification Using MRI Images. Diagnostics (Basel) 2024; 14:2710. [PMID: 39682619 DOI: 10.3390/diagnostics14232710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cancer ranks second among the causes of mortality worldwide, following cardiovascular diseases. Brain cancer, in particular, has the lowest survival rate of any form of cancer. Brain tumors vary in their morphology, texture, and location, which determine their classification. The accurate diagnosis of tumors enables physicians to select the optimal treatment strategies and potentially prolong patients' lives. Researchers who have implemented deep learning models for the diagnosis of diseases in recent years have largely focused on deep neural network optimization to enhance their performance. This involves implementing models with the best performance and incorporating various network architectures by configuring their hyperparameters. METHODS This paper presents a novel hybrid approach for improved brain tumor classification by combining CNNs and EfficientNetV2B3 for feature extraction, followed by K-nearest neighbors (KNN) for classification, which has been described as one of the simplest machine learning algorithms based on supervised learning techniques. The KNN algorithm assumes similarities between new cases and available cases and assigns new cases to the category that most closely resembles the available categories. RESULTS To evaluate the recommended method's efficacy, two widely known benchmark MRI datasets were utilized in the experiments. The initial dataset consisted of 3064 MRI images depicting meningiomas, gliomas, and pituitary tumors. Images from two classes, consisting of healthy brains and brain tumors, were included in the second dataset, which was obtained from Kaggle. CONCLUSIONS In order to enhance the performance even further, this study concatenated the CNN and EfficientNetV2B3's flattened outputs before feeding them into the KNN classifier. The proposed framework was run on these two different datasets and demonstrated outstanding performance, with accuracy of 99.51% and 99.8%, respectively.
Collapse
Affiliation(s)
- Eman M G Younis
- Faculty of Computers and Information, Minia University, Minia 61519, Egypt
| | - Mahmoud N Mahmoud
- Faculty of Computers and Information, Minia University, Minia 61519, Egypt
| | - Abdullah M Albarrak
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Ibrahim A Ibrahim
- Faculty of Computers and Information, Minia University, Minia 61519, Egypt
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| |
Collapse
|
7
|
Raut P, Baldini G, Schöneck M, Caldeira L. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors. FRONTIERS IN RADIOLOGY 2024; 3:1336902. [PMID: 38304344 PMCID: PMC10830800 DOI: 10.3389/fradi.2023.1336902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
Challenging tasks such as lesion segmentation, classification, and analysis for the assessment of disease progression can be automatically achieved using deep learning (DL)-based algorithms. DL techniques such as 3D convolutional neural networks are trained using heterogeneous volumetric imaging data such as MRI, CT, and PET, among others. However, DL-based methods are usually only applicable in the presence of the desired number of inputs. In the absence of one of the required inputs, the method cannot be used. By implementing a generative adversarial network (GAN), we aim to apply multi-label automatic segmentation of brain tumors to synthetic images when not all inputs are present. The implemented GAN is based on the Pix2Pix architecture and has been extended to a 3D framework named Pix2PixNIfTI. For this study, 1,251 patients of the BraTS2021 dataset comprising sequences such as T1w, T2w, T1CE, and FLAIR images equipped with respective multi-label segmentation were used. This dataset was used for training the Pix2PixNIfTI model for generating synthetic MRI images of all the image contrasts. The segmentation model, namely DeepMedic, was trained in a five-fold cross-validation manner for brain tumor segmentation and tested using the original inputs as the gold standard. The inference of trained segmentation models was later applied to synthetic images replacing missing input, in combination with other original images to identify the efficacy of generated images in achieving multi-class segmentation. For the multi-class segmentation using synthetic data or lesser inputs, the dice scores were observed to be significantly reduced but remained similar in range for the whole tumor when compared with evaluated original image segmentation (e.g. mean dice of synthetic T2w prediction NC, 0.74 ± 0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08). A standard paired t-tests with multiple comparison correction were performed to assess the difference between all regions (p < 0.05). The study concludes that the use of Pix2PixNIfTI allows us to segment brain tumors when one input image is missing.
Collapse
Affiliation(s)
- P. Raut
- Department of Pediatric Pulmonology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - G. Baldini
- Institute of Interventional and Diagnostic Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M. Schöneck
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| | - L. Caldeira
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
8
|
Pitarch C, Ungan G, Julià-Sapé M, Vellido A. Advances in the Use of Deep Learning for the Analysis of Magnetic Resonance Image in Neuro-Oncology. Cancers (Basel) 2024; 16:300. [PMID: 38254790 PMCID: PMC10814384 DOI: 10.3390/cancers16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Machine Learning is entering a phase of maturity, but its medical applications still lag behind in terms of practical use. The field of oncological radiology (and neuro-oncology in particular) is at the forefront of these developments, now boosted by the success of Deep-Learning methods for the analysis of medical images. This paper reviews in detail some of the most recent advances in the use of Deep Learning in this field, from the broader topic of the development of Machine-Learning-based analytical pipelines to specific instantiations of the use of Deep Learning in neuro-oncology; the latter including its use in the groundbreaking field of ultra-low field magnetic resonance imaging.
Collapse
Affiliation(s)
- Carla Pitarch
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Eurecat, Digital Health Unit, Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Gulnur Ungan
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Alfredo Vellido
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| |
Collapse
|