1
|
Zou Z, Tang F, Qiao L, Wang S, Zhang H. Integrating sequencing methods with machine learning for antimicrobial susceptibility testing in pediatric infections: current advances and future insights. Front Microbiol 2025; 16:1528696. [PMID: 40109965 PMCID: PMC11919855 DOI: 10.3389/fmicb.2025.1528696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Antimicrobial resistance (AMR) presents a critical challenge in clinical settings, particularly among pediatric patients with life-threatening conditions such as sepsis, meningitis, and neonatal infections. The increasing prevalence of multi- and pan-resistant pathogens is strongly associated with adverse clinical outcomes. Recent technological advances in sequencing methods, including metagenomic next-generation sequencing (mNGS), Oxford Nanopore Technologies (ONT), and targeted sequencing (TS), have significantly enhanced the detection of both pathogens and their associated resistance genes. However, discrepancies between resistance gene detection and antimicrobial susceptibility testing (AST) often hinder the direct clinical application of sequencing results. These inconsistencies may arise from factors such as genetic mutations or variants in resistance genes, differences in the phenotypic expression of resistance, and the influence of environmental conditions on resistance levels, which can lead to variations in the observed resistance patterns. Machine learning (ML) provides a promising solution by integrating large-scale resistance data with sequencing outcomes, enabling more accurate predictions of pathogen drug susceptibility. This review explores the application of sequencing technologies and ML in the context of pediatric infections, with a focus on their potential to track the evolution of resistance genes and predict antibiotic susceptibility. The goal of this review is to promote the incorporation of ML-based predictions into clinical practice, thereby improving the management of AMR in pediatric populations.
Collapse
Affiliation(s)
- Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sisi Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haiyang Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Salam MA, Alsultany FH, Al-Bermany E, Sabri MM, Abdali K, Ahmed NM. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. J Ultrasound 2024:10.1007/s40477-023-00855-8. [PMID: 38324099 DOI: 10.1007/s40477-023-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings. METHODS Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated. RESULTS Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%. CONCLUSION Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.
Collapse
Affiliation(s)
- Mohanad Abdul Salam
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
- Ministry of Education, Baghdad, Iraq
| | - Forat H Alsultany
- Medical Physics Department, Al-Mustaqbal University, Babil, 51001, Iraq
| | - Ehssan Al-Bermany
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
| | - Mohammed M Sabri
- Department of Physics, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, KOY45, Iraq
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| |
Collapse
|
3
|
Siopi M, Efstathiou I, Arendrup MC, Meletiadis J. Development of an agar-based screening method for terbinafine, itraconazole, and amorolfine susceptibility testing of Trichophyton spp. J Clin Microbiol 2024; 62:e0130823. [PMID: 38117081 PMCID: PMC10793311 DOI: 10.1128/jcm.01308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Efstathiou
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, "Attikon" University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Oliveira TF, Valeriano CAT, Buonafina-Paz MDS, Souza-Motta CM, Machado AR, Neves RP, Bezerra JDP, Arantes TD, de Hoog S, Magalhães OMC. Molecular Verification of Trichophyton in the Brazilian URM Culture Collection. Mycopathologia 2024; 189:2. [PMID: 38217794 DOI: 10.1007/s11046-023-00811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/11/2023] [Indexed: 01/15/2024]
Abstract
Trichophyton species cause dermatophytosis in humans, with a high, worldwide frequency of reports and important public health relevance. We evaluated 61 Trichophyton strains from different sources deposited in the University Recife Mycology (URM) culture collection of the Universidade Federal de Pernambuco, Brazil. Strains were phenotypically identified and confirmed by sequencing Internal Transcribed Spacers rDNA and partial beta-tubulin 2-exon. Additionally, we evaluated their susceptibility to terbinafine and itraconazole. Physiological analyses included urease activity and growth in casein medium. Phenotypic methods allowed the reliable identification of T. rubrum only, whereas, for other species, molecular methods were mandatory. All Trichophyton species exhibited susceptibility profiles to itraconazole (0.04-5.33 μg/mL) and terbinafine (0.17-3.33 μg/mL). Our analyses revealed a heterogeneous distribution of T. mentagrophytes, which does not support the current distribution within the species complex of T. mentagrophytes and its genotypes.
Collapse
Affiliation(s)
- Tatiana F Oliveira
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos A T Valeriano
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - M Daniela S Buonafina-Paz
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Alexandre R Machado
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| | - Thales D Arantes
- Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Oliane M C Magalhães
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Ibrahim AS, Ayad DM, Menazea AA. Modification on antibacterial activity of PVC/PVDF blend filled with CuO NPs using laser ablation technique. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractNanocomposite of polyvinyl chloride (PVC)/polyvinylidene fluoride (PVDF) have been in situ synthesized. Copper oxide nanoparticles (CuONPs) have been prepared via using the laser ablation technique. Nanoparticles were added to the blend. The properties of the blend were studied before and after adding CuONPs. These properties were characterized by different techniques. Antimicrobial activity of the prepared nanocomposite film was investigated. FTIR data show vibrational spectral bands and the shift of the bands is related to the interaction and the complexation that occurs between blend and nanoparticles. Structural properties and crystallinity of the samples were investigated using XRD diffraction. XRD results illustrated the effect of CuONPs at two new peaks 2θ = 26.25º and 38.41º. These results confirmed the interaction CuO NPs and PVDF/PVC matrix. UV–Visible analyses confirmed the existing of copper oxide nanoparticles and were also used for determining the optical absorption edge. The absorption edges have been obtained at 430–520 nm for all of the doping films. The obtained values for indirect and direct bandgaps were reduced by raising the nanoparticles because of the presence of charge transfer between PVC/PVDF and CuONPs. SEM images illustrateed the presence of CuONPs on the surface of the blend and the morphology changes which occurred to the blend. The antibacterial activity for the nanocomposite proved the antimicrobial effect of copper oxide nanoparticles. The prepared PVC/PVDF/CuONPs are potentially suggesting to be applied for biomedical applications.
Collapse
|
6
|
Chang W, Bao F, Wang Z, Liu H, Zhang F. Comparison of the Sensititre YeastOne ® and CLSI M38-A2 microdilution methods in determining the activity of nine antifungal agents against dermatophytes. Mycoses 2021; 64:734-741. [PMID: 33760301 DOI: 10.1111/myc.13272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dermatophytes are the most common fungal pathogens causing superficial infections in humans with a high prevalence worldwide. The treatment of these infections is based on the use of topical and systemic antifungal agents. A convenient method with a high predictive value for testing the susceptibilities of dermatophytes is necessary. OBJECTIVE To evaluate the ability of the Sensititre YeastOne® in testing the activity of nine antifungal agents against dermatophytes. METHODS We compared Sensititre® with reference procedure for anidulafungin (ANID), micafungin sodium (MCF), caspofungin acetate (CAS), 5-fluorocytosine (5FC), posaconazole (PCZ), voriconazole (VCZ), itraconazole (ITZ), fluconazole (FLZ) and amphotericin B (AMB) against 79 dermatophyte isolates, the essential agreement (EA) and categorical agreement (CA) between the two methods were obtained. RESULTS The MICs or MECs obtained by the Sensititre® were usually lower than those obtained by the M38-A2. The overall EA between the two methods of nine antifungals was best for 5FC (100%), followed by MCF (94.9%), PCZ (84.8%), AMB (67.1%), FLZ (65.8%), VCZ (63.3%), ANID (29.1%), ITZ (20.3%) and CAS (2.5%). The overall CA between the two methods for all drugs was 100% except for ANID (97.4%), MCF (95%) and PCZ (92.5%). Substantial discrepancies were observed with all drugs except for VCZ and 5FC. The results of M38-A2 in terms of GMIC (or GMEC) and MIC90 (or MEC90) were, in increasing order, as follows: MCF, PCZ, VCZ, ANID, ITZ, CAS, AMB, FLZ and 5FC. CONCLUSIONS The Sensititre YeastOne® shows poor EA with the reference method for dermatophytes; therefore, M38-A2 should remain the reference procedure for antifungal susceptibility testing against dermatophytes.
Collapse
Affiliation(s)
- Wenqian Chang
- Weifang Medical University, Weifang, China.,Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Danial AM, Medina A, Magan N. Lactobacillus plantarum strain HT-W104-B1: potential bacterium isolated from Malaysian fermented foods for control of the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 2021; 37:57. [PMID: 33625606 PMCID: PMC7904726 DOI: 10.1007/s11274-021-03020-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/04/2022]
Abstract
The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.
Collapse
Affiliation(s)
- Azlina Mohd Danial
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.,Science and Food Technology Research Centre, Malaysian Agricultural and Research Institute, 43400, Serdang, Selangor, Malaysia
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.
| |
Collapse
|
8
|
Santos Júnior CJD, Melo ARDL, Nascimento JMDD, Silva SMTD, Araújo MADS, Souza AKP. Evaluation of susceptibility and response in the surface of agents of surface mycoses (Trichophyton mentagrophytes; T. tonsurans) to antifungal drugs of interest in a medical clinic. ABCS HEALTH SCIENCES 2021. [DOI: 10.7322/abcshs.2019162.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Introduction: The resistance of fungal species to drugs usually used in clinics is of great interest in the medical field. Objective: To evaluate susceptibility and in vitro response of species of Trichophyton spp. to antifungal drugs of interest in clinical medicine. Methods: 12 samples of clinical isolates from humans were used, nine of T. mentagrophytes and three of T. tonsurans. Susceptibility tests were performed according to the agar diffusion (AD) and broth microdilution (BM) methods. Results: In the AD method, the species T. tonsurans presented a percentage of sensitivity of 33% in relation to amphotericin B and 66% to itraconazole, with 100% resistance to ketoconazole and fluconazole. T. mentagrophytes also showed 100% resistance to ketoconazole in this technique, with 11% sensitivity to ketoconazole, 22% to itraconazole and 22% of samples classified as sensitive dose dependent. In the MC method, the species T. tonsurans presented a sensitivity percentage of 66%, 55% and 33% in relation to ketoconazole, fluconazole and itraconazole, respectively. The T. mentagrophytes species presented sensitivity percentages of 11%, 11%, 33% and 55% for amphotericin B, itraconazole, ketoconazole and fluconazole, respectively. Conclusion: There was resistance in vitro of the species of T. mentagrophytes and T. tonsurans against the antifungal fluconazole and relative resistance against ketoconazole in the AD method. In BM, however, important percentages of sensitivity were observed for the two species analyzed in relation to the antifungals fluconazole and ketoconazole when compared to itraconazole and amphotericin B.
Collapse
|
9
|
Synthetic peptides against Trichophyton mentagrophytes and T. rubrum: Mechanisms of action and efficiency compared to griseofulvin and itraconazole. Life Sci 2020; 265:118803. [PMID: 33238167 DOI: 10.1016/j.lfs.2020.118803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
AIMS According to the WHO, 20-25% of people worldwide are affected by skin infections caused by dermatophytes, such as those of the Trichophyton genus. Additionally, several dermatophytes have developed resistance to drugs such as griseofulvin and itraconazole. This study tested 2S albumins-derived antimicrobial peptides (AMPs) as alternative antidermatophytic molecules. MAIN METHODS Membrane pore formation assays, tests to detect overproduction of ROS, scanning electron microscopy (SEM) and fluorescence microscopy (FM) were carried out to provide insight into the mechanisms of antidermatophytic action. KEY FINDINGS All AMPs (at 50 μg mL-1) tested reduced the mycelial growth of T. mentagrophytes and T. rubrum by up to 95%. In contrast, using a concentration 20-fold higher, griseofulvin only inhibited T. mentagrophytes by 35%, while itraconazole was not active against both dermatophytes. Scanning electron and fluorescence microscopies revealed that the six AMPs caused severe damage to hyphal morphology by inducing cell wall rupture, hyphal content leakage, and death. Peptides also induced membrane pore formation and oxidative stress by overproduction of ROS. Based on the stronger activity of peptides than the commercial drugs and the mechanism of action, all six peptides have the potential to be either employed as models to develop new antidermatophytic drugs or as adjuvants to existing ones. SIGNIFICANCE The synthetic peptides are more efficient than conventional drug to treat infection caused by dermatophytes being potential molecules to develop new drugs.
Collapse
|
10
|
Souza PFN, Lima PG, Freitas CDT, Sousa DOB, Neto NAS, Dias LP, Vasconcelos IM, Freitas LBN, Silva RGG, Sousa JS, Silva AFB, Oliveira JTA. Antidermatophytic activity of synthetic peptides: Action mechanisms and clinical application as adjuvants to enhance the activity and decrease the toxicity of Griseofulvin. Mycoses 2020; 63:979-992. [PMID: 32628303 DOI: 10.1111/myc.13138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dermatophytes belonging to the Trichophyton genus are important human pathogens, but they have developed resistance to griseofulvin, the most common antifungal drug used to treat dermatophytosis. OBJECTIVE This study was aimed to evaluate the antidermatophytic activity of synthetic peptides, as well as mechanisms of action and synergistic effect with griseofulvin. METHODS Scanning electron microscopy (SEM), atomic force microscopy (AFM) and fluorescence microscopy (FM) were employed to understand the activity and the mechanism of action of peptides. RESULTS Here we report that synthetic peptides at 50 μg/mL, a concentration 20-fold lower than griseofulvin, reduced the microconidia viability of T. mentagrophytes and T. rubrum by 100%, whereas griseofulvin decreased their viability by only 50% and 0%, respectively. The action mechanism of peptides involved cell wall damage, membrane pore formation and loss of cytoplasmic content. Peptides also induced overproduction of reactive oxygen species (ROS) and enhanced the activity of griseofulvin 10-fold against both fungi, suggesting synergistic effects, and eliminated the toxicity of this drug to human erythrocytes. Docking analysis revealed ionic and hydrophobic interactions between peptides and griseofulvin, which may explain the decline of griseofulvin toxicity when mixed with peptides. CONCLUSION Therefore, our results strongly suggest six peptides with high potential to be employed alone as new drugs or as adjuvants to enhance the activity and decrease the toxicity of griseofulvin.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrícia G Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Nilton A S Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Larissa B N Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rafael G G Silva
- Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jeanlex S Sousa
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ayrles F B Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|