1
|
Gaffney S, Kelly DM, Rameli PM, Kelleher E, Martin-Loeches I. Invasive pulmonary aspergillosis in the intensive care unit: current challenges and best practices. APMIS 2023; 131:654-667. [PMID: 37022291 DOI: 10.1111/apm.13316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
The prevalence of invasive pulmonary aspergillosis (IPA) is growing in critically ill patients in the intensive care unit (ICU). It is increasingly recognized in immunocompetent hosts and immunocompromised ones. IPA frequently complicates both severe influenza and severe coronavirus disease 2019 (COVID-19) infection. It continues to represent both a diagnostic and therapeutic challenge and can be associated with significant morbidity and mortality. In this narrative review, we describe the epidemiology, risk factors and disease manifestations of IPA. We discuss the latest evidence and current published guidelines for the diagnosis and management of IPA in the context of the critically ill within the ICU. Finally, we review influenza-associated pulmonary aspergillosis (IAPA), COVID-19-associated pulmonary aspergillosis (CAPA) as well as ongoing and future areas of research.
Collapse
Affiliation(s)
- Sarah Gaffney
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Dearbhla M Kelly
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Puteri Maisarah Rameli
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Zhang Y, Shen F, Yang Y, Niu M, Chen D, Chen L, Wang S, Zheng Y, Sun Y, Zhou F, Qian H, Wu Y, Zhu T. Insights into the Profile of the Human Expiratory Microbiota and Its Associations with Indoor Microbiotas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6282-6293. [PMID: 35512288 PMCID: PMC9113006 DOI: 10.1021/acs.est.2c00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/04/2023]
Abstract
Microorganisms residing in the human respiratory tract can be exhaled, and they constitute a part of environmental microbiotas. However, the expiratory microbiota community and its associations with environmental microbiotas remain poorly understood. Here, expiratory bacteria and fungi and the corresponding microbiotas from the living environments were characterized by DNA amplicon sequencing of residents' exhaled breath condensate (EBC) and environmental samples collected from 14 residences in Nanjing, China. The microbiotas of EBC samples, with a substantial heterogeneity, were found to be as diverse as those of skin, floor dust, and airborne microbiotas. Model fitting results demonstrated the role of stochastic processes in the assembly of the expiratory microbiota. Using a fast expectation-maximization algorithm, microbial community analysis revealed that expiratory microbiotas were differentially associated with other types of microbiotas in a type-dependent and residence-specific manner. Importantly, the expiratory bacteria showed a composition similarity with airborne bacteria in the bathroom and kitchen environments with an average of 12.60%, while the expiratory fungi showed a 53.99% composition similarity with the floor dust fungi. These differential patterns indicate different relationships between expiratory microbiotas and the airborne microbiotas and floor dust microbiotas. The results here illustrated for the first time the associations between expiratory microbiotas and indoor microbiotas, showing a potential microbial exchange between the respiratory tract and indoor environment. Thus, improved hygiene and ventilation practices can be implemented to optimize the indoor microbial exposome, especially in indoor bathrooms and kitchens.
Collapse
Affiliation(s)
- Yin Zhang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Yi Yang
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Mutong Niu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Da Chen
- School
of Environment and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Longfei Chen
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Shengqi Wang
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yunhao Zheng
- Institute
of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ye Sun
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Feng Zhou
- School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hua Qian
- School
of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yan Wu
- School of
Environmental Science and Engineering, Shandong
University, Jinan 250100, China
| | - Tianle Zhu
- School
of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Respiratory Mycoses: A Call to Action to Recognize, Educate and Invest. Mycopathologia 2021; 186:569-573. [PMID: 34490550 PMCID: PMC8421193 DOI: 10.1007/s11046-021-00589-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 02/08/2023]
|