1
|
Diez-Martin E, Hernandez-Suarez L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Mycobiota and Antifungal Antibodies as Emerging Targets for the Diagnosis and Prognosis of Human Diseases. J Fungi (Basel) 2025; 11:296. [PMID: 40278117 PMCID: PMC12028713 DOI: 10.3390/jof11040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
The human body is colonized by diverse microorganisms, with bacteria being the most extensively studied. However, fungi, collectively known as "the mycobiota," are increasingly recognized as integral components of the microbiota, inhabiting nearly all mucosal surfaces. Commensal fungi influence host immunity similarly to bacteria and contribute to other essential functions, including metabolism. This emerging understanding positions fungi as potential biomarkers for the diagnosis and prognosis of various diseases. In this review, we explore the dual roles of fungi as both commensals and pathogens, and the potential of antifungal antibodies to serve as diagnostic and prognostic tools, especially in chronic immune-inflammatory non-communicable diseases, including inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, and neurodegenerative disorders. Finally, we address current challenges and outline future perspectives for leveraging fungal biomarkers in clinical practice.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
2
|
Feys S, Dudoignon E, Chantelot L, Carvalho A, Wauters J, Aimanianda V, Dellière S. Revisiting diagnostics: immune markers to diagnose invasive pulmonary aspergillosis. Clin Microbiol Infect 2025; 31:506-509. [PMID: 39551344 DOI: 10.1016/j.cmi.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Emmanuel Dudoignon
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), INSERM UMR-S 942 Mascot, Lariboisière Hospital, Paris, France; FHU PROMICE, Paris, France
| | - Louise Chantelot
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France; Center for Infectious Diseases and Tropical Medicine, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's -PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Vishukumar Aimanianda
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, Paris, France
| | - Sarah Dellière
- Institut Pasteur, Immunobiology of Aspergillus, Université de Paris Cité, Paris, France; Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
3
|
He Q, Cao J, Zhang M, Feng C. IL-17 in plasma and bronchoalveolar lavage fluid in non-neutropenic patients with invasive pulmonary aspergillosis. Front Cell Infect Microbiol 2024; 14:1402888. [PMID: 39176263 PMCID: PMC11339031 DOI: 10.3389/fcimb.2024.1402888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Background The purpose of this study was to investigate the diagnostic value of IL-17 detection in bronchoalveolar lavage fluid (BALF) and plasma samples from nonneutropenic patients with invasive pulmonary aspergillosis. Methods We retrospectively collected data on non-neutropenic patients who were suspected to have IPA admitted to the Third Affiliated Hospital of Soochow University between March 2020 to January 2023. IL-17 and GM were measured using enzyme-linked immunosorbent assays. Results A total of 281 patients were enrolled in this study, of which 62 had proven or probable IPA and the remaining 219 patients were controls. The plasma and BALF IL-17 levels were significantly higher in the IPA group compared with the control group. The plasma GM, plasma IL17, BALF GM, and BALF IL17 assays had sensitivities of 56.5%, 72.6%, 68.7%, and 81.2%, respectively, and specificities of 87.7%, 69.4%, 91.9%, and 72.6%, respectively. The sensitivity of IL17 in plasma and BALF was higher than that of GM. Plasma GM in combination with IL-17 increases the sensitivity but does not decrease the diagnostic specificity of GM testing. The diagnostic sensitivity and specificity of BALF GM combined with IL-17 for IPA in non-neutropenic patients were greater than 80% and there was a significant increase in sensitivity compared with BALF GM. Conclusions Plasma and BALF IL-17 levels were significantly higher in non-neutropenic patients with IPA. The sensitivity of plasma and BLAF IL-17 for diagnosing IPA in non-neutropenic patients was superior to that of GM. Combined detection of lavage fluid GM and IL17 significantly improves the diagnosis of IPA in non-neutropenic patients. The combined detection of GM and IL-17 in plasma also contributes to the diagnosis of IPA in patients who cannot tolerate invasive procedures.
Collapse
Affiliation(s)
| | | | | | - Chunlai Feng
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Götz MP, Duque Villegas MA, Fageräng B, Kerfin A, Skjoedt MO, Garred P, Rosbjerg A. Transient Binding Dynamics of Complement System Pattern Recognition Molecules on Pathogens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1493-1503. [PMID: 38488502 DOI: 10.4049/jimmunol.2300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
Previous studies of pattern recognition molecules (PRMs) of the complement system have revealed difficulties in observing binding on pathogens such as Aspergillus fumigatus and Escherichia coli, despite complement deposition indicative of classical and lectin pathway activation. Thus, we investigated the binding dynamics of PRMs of the complement system, specifically C1q of the classical pathway and mannose-binding lectin (MBL) of the lectin pathway. We observed consistently increasing deposition of essential complement components such as C4b, C3b, and the terminal complement complex on A. fumigatus and E. coli. However, C1q and MBL binding to the surface rapidly declined during incubation after just 2-4 min in 10% plasma. The detachment of C1q and MBL can be linked to complement cascade activation, as the PRMs remain bound in the absence of plasma. The dissociation and the fate of C1q and MBL seem to have different mechanistic functions. Notably, C1q dynamics were associated with local C1 complex activation. When C1s was inhibited in plasma, C1q binding not only remained high but further increased over time. In contrast, MBL binding was inversely correlated with total and early complement activation due to MBL binding being partially retained by complement inhibition. Results indicate that detached MBL might be able to functionally rebind to A. fumigatus. In conclusion, these results reveal a (to our knowledge) novel "hit-and-run" complement-dependent PRM dynamic mechanism on pathogens. These dynamics may have profound implications for host defense and may help increase the functionality and longevity of complement-dependent PRMs in circulation.
Collapse
Affiliation(s)
- Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Infectious Diseases, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute for Systemic Inflammation Research, Medicine Section, University of Lübeck, Lübeck, Germany
| | - Mario Alejandro Duque Villegas
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Infection Immunology, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Beatrice Fageräng
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Aileen Kerfin
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Institute for Systemic Inflammation Research, Medicine Section, University of Lübeck, Lübeck, Germany
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Assing K, Laursen CB, Campbell AJ, Beck HC, Davidsen JR. Proteome and Dihydrorhodamine Profiling of Bronchoalveolar Lavage in Patients with Chronic Pulmonary Aspergillosis. J Fungi (Basel) 2024; 10:314. [PMID: 38786669 PMCID: PMC11122433 DOI: 10.3390/jof10050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Neutrophil and (alveolar) macrophage immunity is considered crucial for eliminating Aspergillus fumigatus. Data derived from bronchoalveloar lavage (BAL) characterizing the human immuno-pulmonary response to Aspergillus fumigatus are non-existent. To obtain a comprehensive picture of the immune pathways involved in chronic pulmonary aspergillosis (CPA), we performed proteome analysis on AL of 9 CPA patients and 17 patients with interstitial lung disease (ILD). The dihydrorhodamine (DHR) test was also performed on BAL and blood neutrophils from CPA patients and compared to blood neutrophils from healthy controls (HCs). BAL from CPA patients primarily contained neutrophils, while ILD BAL was also characterized by a large fraction of lymphocytes; these differences likely reflecting the different immunological etiologies underlying the two disorders. BAL and blood neutrophils from CPA patients displayed the same oxidative burst capacity as HC blood neutrophils. Hence, immune evasion by Aspergillus involves other mechanisms than impaired neutrophil oxidative burst capacity per se. CPA BAL was enriched by proteins associated with innate immunity, as well as, more specifically, with neutrophil degranulation, Toll-like receptor 4 signaling, and neutrophil-mediated iron chelation. Our data provide the first comprehensive target organ-derived immune data on the human pulmonary immune response to Aspergillus fumigatus.
Collapse
Affiliation(s)
- Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Christian B. Laursen
- South Danish Center for Interstitial Lung Diseases (SCILS) and Pulmonary Aspergillosis Center Denmark (PACD), Department of Respiratory Medicine, Odense University Hospital, DK-5000 Odense, Denmark; (C.B.L.)
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Amanda Jessica Campbell
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, DK-5000 Odense, Denmark; (A.J.C.); (H.C.B.)
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, DK-5000 Odense, Denmark; (A.J.C.); (H.C.B.)
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS) and Pulmonary Aspergillosis Center Denmark (PACD), Department of Respiratory Medicine, Odense University Hospital, DK-5000 Odense, Denmark; (C.B.L.)
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|