1
|
Xue Y, Liu C, Andrews G, Wang J, Ge Y. Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. NANO CONVERGENCE 2022; 9:15. [PMID: 35366117 PMCID: PMC8976173 DOI: 10.1186/s40580-022-00307-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
In the last decade, carbon quantum dots (CQDs), as a novel class of carbon-based nanomaterials, have received increasing attention due to their distinct properties. CQDs are ultimately small nanoparticles with an average size below 10 nm, possessing high water solubility, alluring photoluminescence, photostability, excellent biocompatibility, low/none toxicity, environmental friendliness, and high sustainability, etc. In history, there are intermittent threats from viruses to humans, animals and plants worldwide, resulting in enormous crises and impacts on our life, environment, economy and society. Some recent studies have unveiled that certain types of CQDs exhibited high and potent antiviral activities against various viruses such as human coronavirus, arterivirus, norovirus and herpesvirus. Moreover, they have been successfully explored and developed for different virus detections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article exclusively overviews and discusses the recent progress of designing, synthesizing, modifying/functionalizing and developing CQDs towards effective virus detection as well as the inhibition and treatment of viral infection. Their mechanisms and applications against various pathogenic viruses are addressed. The latest outcomes for combating the coronavirus disease 2019 (COVID-19) utilizing CQDs are also highlighted. It can be envisaged that CQDs could further benefit the development of virus detectors and antiviral agents with added broad-spectrum activity and cost-effective production.
Collapse
Affiliation(s)
- Yuxiang Xue
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3HL, UK
| | - Chenchen Liu
- Department of Metabolism, Digestion and Reproductive, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Gavin Andrews
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jinyan Wang
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yi Ge
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
2
|
Zamora-Ledezma C, C. DFC, Medina E, Sinche F, Santiago Vispo N, Dahoumane SA, Alexis F. Biomedical Science to Tackle the COVID-19 Pandemic: Current Status and Future Perspectives. Molecules 2020; 25:E4620. [PMID: 33050601 PMCID: PMC7587204 DOI: 10.3390/molecules25204620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19's survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100650, Ecuador;
| | - David F. Clavijo C.
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Ernesto Medina
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100650, Ecuador;
| | - Federico Sinche
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| |
Collapse
|
3
|
Application of nanomaterials for the electrical and optical detection of the hepatitis B virus. Anal Biochem 2018; 549:157-163. [DOI: 10.1016/j.ab.2018.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 01/23/2023]
|
4
|
Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. NANOSCALE 2013; 5:7664-7684. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have shown great promise in biomedical applications. In this review, we summarize the recent advances in the design and fabrication of core-shell and hetero-structured SPIONs and further outline some exciting developments and progresses of these multifunctional SPIONs for diagnosis, multimodality imaging, therapy, and biophotonics.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | | | | |
Collapse
|
5
|
Wu W, Xiao X, Zhang S, Li H, Zhou X, Jiang C. One-Pot Reaction and Subsequent Annealing to Synthesis Hollow Spherical Magnetite and Maghemite Nanocages. NANOSCALE RESEARCH LETTERS 2009; 4:926-931. [PMID: 20596278 PMCID: PMC2894336 DOI: 10.1007/s11671-009-9342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 05/04/2023]
Abstract
Water-soluble hollow spherical magnetite (Fe(3)O(4)) nanocages (ca. 100 nm) with high saturation magnetization are prepared in a one-pot reaction by sol-gel method and subsequent annealing to synthesise the maghemite (gamma-Fe(2)O(3)) nanocages with similar nanostructures. The nanocages have been investigated by powder X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), and superconducting quantum interference device (SQUID). The results indicated that glutamic acid played an important role in the formation of the cage-like nanostructures.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, 430072, Wuhan, People’s Republic of China
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
- Center of Electron Microscopy, Wuhan University, 430072, Wuhan, People’s Republic of China
| | - Xiangheng Xiao
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
- Center of Electron Microscopy, Wuhan University, 430072, Wuhan, People’s Republic of China
| | - Shaofeng Zhang
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
| | - Hang Li
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
| | - Xiaodong Zhou
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
| | - Changzhong Jiang
- Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, 430072, Wuhan, People’s Republic of China
- Department of Physics, Wuhan University, 430072, Wuhan, People’s Republic of China
- Center of Electron Microscopy, Wuhan University, 430072, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Zhao X, Cai Y, Wang T, Shi Y, Jiang G. Preparation of Alkanethiolate-Functionalized Core/Shell Fe3O4@Au Nanoparticles and Its Interaction with Several Typical Target Molecules. Anal Chem 2008; 80:9091-6. [DOI: 10.1021/ac801581m] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Thanh Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|