1
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
2
|
Xu D, Wu L, Yao H, Zhao L. Catalase-Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203400. [PMID: 35971168 DOI: 10.1002/smll.202203400] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The field of nanozymes has developed rapidly over the past decade. Among various oxidoreductases mimics, catalase (CAT)-like nanozyme, acting as an essential part of the regulation of reactive oxygen species (ROS), has attracted extensive research interest in recent years. However, CAT-like nanozymes are not as well discussed as other nanozymes such as peroxidase (POD)-like nanozymes, etc. Compared with natural catalase or artificial CAT enzymes, CAT-like nanozymes have unique properties of low cost, size-dependent properties, high catalytic activity and stability, and easy surface modification, etc., which make them widely used in various fields, especially in tumor therapy and disease treatment. Consequently, there is a great requirement to make a systematic discussion on CAT-like nanozymes. In this review, some key aspects of CAT-like nanozymes are deeply summarized as: 1) Typical CAT-like nanozymes classified by different nanomaterials; 2) The catalytic mechanisms proposed by experimental and theoretical studies; 3) Extensive applications in regard to tumor therapy, cytoprotection and sensing. Therefore, it is prospected that this review will contribute to the further design of CAT-like nanozymes and optimize their applications with much higher efficiency than before.
Collapse
Affiliation(s)
- Deting Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haodong Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Hu W, Yie KHR, Liu C, Zhu J, Huang Z, Zhu B, Zheng D, Yang B, Huang B, Yao L, Liu J, Shen X, Deng Z. Improving the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to enhance ROS elimination and osteogenesis. Dent Mater 2022; 38:1362-1375. [PMID: 35752471 DOI: 10.1016/j.dental.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Equipped with anti-oxidative properties, cerium oxide nanoparticles (CNPs) are gradually being adopted over the years in the field of oxidative stress research. However, the effects of CNPs may be diminished when under the influence of prolonged and substantially elevated levels of oxidative stress. Therefore, it is imperative to enhance the efficacy of CNPs to resist oxidative stress. In this study, our approach involves the fabrication of titanium surface CNPs coatings doped with different concentrations of lanthanum ions (La3+) and the investigation of their local anti-oxidative stress potential. The physicochemical characterization showed that the La-CNPs groups had a substantial increase in the generation of oxygen vacancies within the CNPs structure with the increase of La doping concentration. In vitro findings proofed that the cytocompatibility of different La-CNPs coatings showed a trend of increasing first and then decreasing with the increase of La doping concentration under oxidative stress microenvironment. Among these groups, the 30 % La-CNPs group presented the best cell proliferation and osteogenic differentiation which could activate the FoxO1 pathway, then upregulated the expression of SOD1 and CAT, and finally resulted in the inhibition of ROS production. In vivo results further confirmed that the 30 % La-CNPs group showed significant osteogenic effects in two rat models (osteoporosis and diabetes models). In conclusion, we believe that the 30 % La-CNPs coating holds promising potential for its implant applications in patients with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Wenjia Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinlei Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Dongyang Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingqian Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Benheng Huang
- School and Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
4
|
Cerium oxide decorated 5-fluorouracil loaded chitosan nanoparticles for treatment of hepatocellular carcinoma. Int J Biol Macromol 2022; 216:52-64. [PMID: 35750101 DOI: 10.1016/j.ijbiomac.2022.06.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) play a crucial role in the mammalian system in both normal and pathological conditions. Hence, this work prepared and characterized the ROS responsive cerium oxide nanoparticles (CeO2 NPs) decorated 5-fluorouracil (5FU) loaded chitosan (CS) nanoparticles (CS-5FU NPs) for enhanced anticancer activity in hepatocellular carcinoma (HepG2 cells). CeO2 NPs decorated CS-5FU NPs were found to be spherical in shape and black dense aggregated particles sized 200 nm. The functional properties and cubic crystalline structure of CeO2 NPs were studied by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis, respectively. Further, CS-5FU-CeO2 NPs attenuated the 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH) induced ROS formation in mouse embryonic fibroblasts (NIH3T3 cells) while enhancing apoptotic cell death in HepG2 cells by controlled delivery of 5FU. Furthermore, CS-5FU-CeO2 NPs have not exhibited toxicity to red blood cells (RBCs) and chick chorioallantoic membrane (CAM). Hence, this work concluded that CeO2 NPs decorated CS-5FU NPs synergistically enhanced anticancer activity in HepG2 cells through the regulation of ROS.
Collapse
|
5
|
Current Nanoparticle-Based Technologies for Osteoarthritis Therapy. NANOMATERIALS 2020; 10:nano10122368. [PMID: 33260493 PMCID: PMC7760945 DOI: 10.3390/nano10122368] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint disease that is characterized by joint pain and stiffness, and limitation of motion and the major cause of disability, which reduces life quality of patients and brings a large economic burden to the family and society. Current clinical treatment is mostly limited to symptomatic treatment aimed at pain alleviation and functional improvement, rather than suppressing the progression of OA. Nanotechnology is a promising strategy for the treatment of OA. In this review, we summarize the current experimental progress that focuses on technologies such as liposomes, micelles, dendrimers, polymeric nanoparticles (PNPs), exosomes, and inorganic nanoparticles (NPs) for their potential treatment of OA.
Collapse
|
6
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
7
|
Nusrath K, Muraleedharan K. Synthesis, evaluation of kinetic characteristics and investigation of apoptosis of Cu2+-modified ceria nano discs. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2018.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Popov AL, Popova NR, Tarakina NV, Ivanova OS, Ermakov AM, Ivanov VK, Sukhorukov GB. Intracellular Delivery of Antioxidant CeO2 Nanoparticles via Polyelectrolyte Microcapsules. ACS Biomater Sci Eng 2018; 4:2453-2462. [DOI: 10.1021/acsbiomaterials.8b00489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Nadezda V. Tarakina
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Olga S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Gleb B. Sukhorukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino 142290, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
9
|
Clark AJ, Petty HR. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells. NANOTECHNOLOGY 2016; 27:075103. [PMID: 26788907 DOI: 10.1088/0957-4484/27/7/075103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles' catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.
Collapse
Affiliation(s)
- Andrea J Clark
- Department of Ophthalmology and Visual Sciences, 1000 Wall Street, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
10
|
Shcherbakov AB, Zholobak NM, Spivak NY, Ivanov VK. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. RUSS J INORG CHEM+ 2015. [DOI: 10.1134/s0036023615130057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
d'Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Richard d'Arcy
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
- School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|