1
|
Cholé H, Merlin A, Henderson N, Paupy E, Mahé P, Arnold G, Sandoz JC. Antenna movements as a function of odorants' biological value in honeybees (Apis mellifera L.). Sci Rep 2022; 12:11674. [PMID: 35804161 PMCID: PMC9270438 DOI: 10.1038/s41598-022-14354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In honeybees, the antennae are highly mobile sensory organs that express scanning movements in various behavioral contexts and toward many stimuli, especially odorants. The rules underlying these movements are still unclear. Using a motion-capture system, we analyzed bees' antennal responses to a panel of pheromonal and other biologically relevant odorants. We observed clear differences in bees' antennal responses, with opposite movements to stimuli related to opposite contexts: slow backward movements were expressed in response to alarm pheromones, while fast forward movements were elicited by food related cues as well as brood and queen related pheromones. These responses are reproducible, as a similar pattern of odor-specific responses was observed in bees from different colonies, on different years. We then tested whether odorants' attractiveness for bees, measured using an original olfactory orientation setup, may predict antenna movements. This simple measure of odorants' valence did however not correlate with either antennal position or velocity measures, showing that more complex rules than simple hedonics underlie bees' antennal responses to odorants. Lastly, we show that newly-emerged bees express only limited antennal responses compared to older bees, suggesting that a significant part of the observed responses are acquired during bees' behavioral development.
Collapse
Affiliation(s)
- Hanna Cholé
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Alice Merlin
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Nicholas Henderson
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Estelle Paupy
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Prisca Mahé
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Gérard Arnold
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Kiss T. Do terrestrial gastropods use olfactory cues to locate and select food actively? INVERTEBRATE NEUROSCIENCE 2017; 17:9. [PMID: 28688004 DOI: 10.1007/s10158-017-0202-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Having been investigated for over 40 years, some aspects of the biology of terrestrial gastropod's olfactory system have been challenging and highly contentious, while others still remain unresolved. For example, a number of terrestrial gastropod species can track the odor of food, while others have no strong preferences toward food odor; rather they find it by random encounter. Here, while assessing the most recent findings and comparing them with earlier studies, the aspects of the food selection based on olfactory cues are examined critically to highlight the speculations and controversies that have arisen. We analyzed and compared the potential role of airborne odors in the feeding behavior of several terrestrial gastropod species. The available results indicate that in the foraging of most of the terrestrial gastropod species odor cues contribute substantially to food finding and selection. The results also suggest, however, that what they will actually consume largely depends on where they live and the species of gastropod that they are. Due to the voluminous literature relevant to this object, this review is not intended to be exhaustive. Instead, I selected what I consider to be the most important or critical in studies regarding the role of the olfaction in feeding of terrestrial gastropods.
Collapse
Affiliation(s)
- Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno Str. 2-3, Tihany, 8237, Hungary.
| |
Collapse
|