1
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Kulhari U, Kumar N, Murty US, Sahu BD. Biological Activities, Pharmacokinetics and Toxicity of Nootkatone: A Review. Mini Rev Med Chem 2022; 22:2244-2259. [PMID: 35156582 DOI: 10.2174/1389557522666220214092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Plant-based drugs have a significant impact on modern therapeutics due to their vast array of pharmacological activities. The integration of herbal plants in the current healthcare system has emerged as a new field of research. It can be used for the identification of novel lead compound candidates for future drug development. Nootkatone is a sesquiterpene derivative and an isolate of grapefruit. Shreds of evidence illustrate that nootkatone targets few molecular mechanisms to exhibit its pharmacological activity and yet needs more exploration to be established. The current review is related to nootkatone, drafted through a literature search using research articles and books from different sources, including Science Direct, Google Scholar, Elsevier, PubMed, and Scopus. It has been reported to possess a wide range of pharmacological activities such as anti-inflammatory, anticancer, antibacterial, hepatoprotective, neuroprotective, and cardioprotective. Although preclinical studies in experimental animal models suggest that nootkatone has therapeutic potential, it is further warranted to evaluate its toxicity and pharmacokinetic parameters before being applied to humans. Hence in the present review, we have summarized the scientific knowledge on nootkatone with a particular emphasis on its pharmacological properties to encourage researchers for further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Naresh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| |
Collapse
|
2
|
Qi Y, Cheng X, Jing H, Yan T, Xiao F, Wu B, Bi K, Jia Y. Combination of schisandrin and nootkatone exerts neuroprotective effect in Alzheimer's disease mice model. Metab Brain Dis 2019; 34:1689-1703. [PMID: 31422511 DOI: 10.1007/s11011-019-00475-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases which seriously affect the quality of life of the elderly. Schisandrin (SCH) and nootkatone (NKT) are the two marked active components in ASHP. In this study, the effects of Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP) as well as its bioactive components on cognitive deficiency and dementia were revealed via Aβ1-42-induced AD in mouse. Morris water maze test showed that acute administration of ASHP and SCH + NKT treatments had higher discrimination index in the object recognition task, more quadrant dwell time and shorter escape latency compared with those in the Morris water maze. The levels of TNF-α, IL-1β and IL-6 were decreased after ASHP and SCH + NKT treatment. The inflammatory response was attenuated by inhibiting TLR4/ NF-κB/ NLRP3 pathway. In addition, ASHP and SCH + NKT treatments significantly restored the activities of superoxide dismutase (SOD), glutathione S-transferase (GST), cyclooxygenase-2 (COX-2), total antioxidant capacity (T-AOC) and inducible nitric oxide syntheses (iNOS), and the levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO). The histopathological changes of hippocampus were noticeably improved after ASHP and SCH + NKT treatments. These findings demonstrate that ASHP as well as its bioactive components exerted a protective effects on cognitive disorder, inflammatory reaction and oxidative stress.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Tingxu Yan
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Feng Xiao
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Bo Wu
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| | - Ying Jia
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|