1
|
Matchynski JI, Manwar R, Kratkiewicz KJ, Madangopal R, Lennon VA, Makki KM, Reppen AL, Woznicki AR, Hope BT, Perrine SA, Conti AC, Avanaki K. Direct measurement of neuronal ensemble activity using photoacoustic imaging in the stimulated Fos-LacZ transgenic rat brain: A proof-of-principle study. PHOTOACOUSTICS 2021; 24:100297. [PMID: 34522608 PMCID: PMC8426561 DOI: 10.1016/j.pacs.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 05/16/2023]
Abstract
Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.
Collapse
Key Words
- ANSI, American national standards institute
- AP, anterior-posterior
- Brain
- CNR, contrast-to-noise ratio
- Cocaine
- DMSO, dimethyl sulfoxide
- DV, dorsal-ventral
- F/M-PAT, functional molecular photoacoustic tomography
- FOV, field-of-view
- Fear conditioning
- Fos
- GRIN, gradient-index
- IL, infralimbic cortex
- ML, medial-lateral
- Neuronal ensemble
- OCT, optical coherence tomography
- OPO, optical parametric oscillator
- PA, photoacoustic
- PBS, phosphate buffer saline
- PL, prelimbic cortex
- Photoacoustic imaging
- SNR, signal-to-noise ratio
- US, ultrasound
- X-gal
- X-gal, beta-D-galactosidase
- fMRI, functional magnetic resonance imaging
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- James I. Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rayyan Manwar
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Karl J. Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Rajtarun Madangopal
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Veronica A. Lennon
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kassem M. Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Abbey L. Reppen
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | | | - Bruce T. Hope
- The National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD, USA
| | - Shane A. Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C. Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
2
|
Evans HT, Blackmore D, Götz J, Bodea LG. De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory. Brain Res Bull 2021; 169:94-103. [PMID: 33465403 DOI: 10.1016/j.brainresbull.2020.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023]
Abstract
Memory formation is a fundamental function of the nervous system that enables the experience-based adaptation of behaviour. The formation, recall and updating of long-term memory (LTM) requires new protein synthesis through its direct involvement in neuronal processes, such as long-term potentiation (LTP), long-term depression (LTD) and synaptic scaling. We discuss the advantages and limitations of several emerging techniques which enable the tagging of newly synthesised proteins, including stable isotope labelling with amino acids in cell culture (SILAC), puromycin labelling, and non-canonical amino acid (NCAA) labelling. We further present how these methods allow for the identification and visualisation of proteins which are newly synthesised during different stages of memory formation. These emerging techniques will continue to expand our understanding of how memories are formed, consolidated and retrieved.
Collapse
Affiliation(s)
- Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Daniel Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|