1
|
Makhaeva GF, Grishchenko MV, Kovaleva NV, Boltneva NP, Rudakova EV, Astakhova TY, Timokhina EN, Pronkin PG, Lushchekina SV, Khudina OG, Zhilina EF, Shchegolkov EV, Lapshina MA, Dubrovskaya ES, Radchenko EV, Palyulin VA, Burgart YV, Saloutin VI, Charushin VN, Richardson RJ. Conjugates of amiridine and salicylic derivatives as promising multifunctional CNS agents for potential treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400819. [PMID: 39686878 DOI: 10.1002/ardp.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
New conjugates of amiridine and salicylic derivatives (salicylamide, salicylimine, and salicylamine) with different lengths of alkylene spacers were designed, synthesized, and evaluated as potential multifunctional central nervous system therapeutic agents for Alzheimer's disease (AD). Conjugates demonstrated high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition (IC50: AChE, 0.265-4.24 μM; BChE, 0.01-0.64 μM) but poor activity against off-target carboxylesterase (CES). Specifically, conjugates with a (CH2)8 spacer showed the highest AChE and BChE inhibition: 3-16 times more effective than amiridine. Salicylamides 7b and 7c had the maximum BChE/AChE selectivity ratios: 193 and 138, respectively. Conjugates were mixed-type reversible inhibitors of both cholinesterases and displaced propidium from the AChE peripheral anionic site (PAS) at the level of donepezil. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test; inhibition increased with spacer elongation, being greatest for (CH2)8. The results agreed with molecular docking to AChE, BChE, and Aβ42. Conjugates exhibited high 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)•+-scavenging activity comparable to the standard antioxidant Trolox, and they showed the ability to bind Cu2+, Fe2+, and Zn2+. Conjugates had favorable predicted intestinal absorption and blood-brain barrier permeability. Altogether, the results indicate that the new conjugates possess potential for further development as multifunctional anti-AD drug candidates.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatiana Y Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Pronkin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Sofya V Lushchekina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Olga G Khudina
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Ekaterina F Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Maria A Lapshina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena S Dubrovskaya
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Synthesis and study of the biological activity of thiourea-containing amiridine derivatives as potential multi-target drugs for the treatment of Alzheimer’s disease. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
4
|
Makhaeva GF, Lushchekina SV, Kovaleva NV, Yu Astakhova T, Boltneva NP, Rudakova EV, Serebryakova OG, Proshin AN, Serkov IV, Trofimova TP, Tafeenko VA, Radchenko EV, Palyulin VA, Fisenko VP, Korábečný J, Soukup O, Richardson RJ. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment. Bioorg Chem 2021; 112:104974. [PMID: 34029971 DOI: 10.1016/j.bioorg.2021.104974] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 μM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 μM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Alexey N Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Igor V Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana P Trofimova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119881, Russia
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|