1
|
Veschi V, Liu Z, Voss TC, Ozbun L, Gryder B, Yan C, Hu Y, Ma A, Jin J, Mazur SJ, Lam N, Souza BK, Giannini G, Hager GL, Arrowsmith CH, Khan J, Appella E, Thiele CJ. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell 2017; 31:50-63. [PMID: 28073004 PMCID: PMC5233415 DOI: 10.1016/j.ccell.2016.12.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4K20me1 methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53K382me1, leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB.
Collapse
Affiliation(s)
- Veronica Veschi
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Ty C Voss
- High-Throughput Imaging Facility, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laurent Ozbun
- High-Throughput Imaging Facility, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Center for Biomedical Informatics and Information Technology, Center for Cancer Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Ying Hu
- Center for Biomedical Informatics and Information Technology, Center for Cancer Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Anqi Ma
- Department of Structural and Chemical Biology, Oncological Sciences, Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Structural and Chemical Biology, Oncological Sciences, Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sharlyn J Mazur
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Norris Lam
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Barbara K Souza
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA
| | - Giuseppe Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ettore Appella
- Chemical Immunology Section, Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC, 1-3940, 10 Center Drive MSC-1105, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Tan F, Thiele CJ, Li Z. Collapsin response mediator proteins: Potential diagnostic and prognostic biomarkers in cancers (Review). Oncol Lett 2014; 7:1333-1340. [PMID: 24765134 PMCID: PMC3997700 DOI: 10.3892/ol.2014.1909] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/07/2014] [Indexed: 11/13/2022] Open
Abstract
The collapsin response mediator proteins (CRMPs) were originally identified as mediators of semaphorin 3A signaling and neuronal differentiation. The CRMP family consists of five homologous cytosolic proteins, CRMP1-5. Altered expression levels of CRMPs have been observed in several malignant tumors, including lung, breast, colorectal, prostate, pancreatic and neuroendocrine lung cancer. The aim of the current study was to review the recent progress achieved in understanding the association between the different levels of CRMP expression in tumors and their involvement in pathological functions, such as tumor metastasis, disease progression, subtype differentiation and clinical outcome, to address the potential value of CRMPs as biomarkers for the diagnosis and prognosis of cancer patients.
Collapse
Affiliation(s)
- Fei Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhijie Li
- Research Center for Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
3
|
Collet B, Guitton N, Saïkali S, Avril T, Pineau C, Hamlat A, Mosser J, Quillien V. Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach. Proteome Sci 2011; 9:16. [PMID: 21470419 PMCID: PMC3083325 DOI: 10.1186/1477-5956-9-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/06/2011] [Indexed: 01/16/2023] Open
Abstract
Background Genomics, transcriptomics and proteomics of glioblastoma multiforme (GBM) have recently emerged as possible tools to discover therapeutic targets and biomarkers for new therapies including immunotherapy. It is well known that macroscopically complete surgical excision, radiotherapy and chemotherapy have therapeutic limitations to improve survival in these patients. In this study, we used a differential proteomic-based technique (2D-Difference Gel Electrophoresis) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify proteins that may serve as brain tumor antigens in new therapeutic assays. Five samples of patients presenting a GBM and five samples of microscopically normal brain tissues derived from brain epileptic surgery specimen were labeled and run in 2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis) with an internal pool sample on each gel. Five gels were matched and compared with DIA (Difference In-gel Analysis) software. Differential spots were picked, in-gel digested and peptide mass fingerprints were obtained. Results From 51 protein-spots significantly up-regulated in GBM samples, mass spectrometry (MS) identified twenty-two proteins. The differential expression of a selected protein set was first validated by western-blotting, then tested on large cohorts of GBM specimens and non-tumor tissues, using immunohistochemistry and real-time RT-PCR. Conclusions Our results confirmed the importance of previously described proteins in glioma pathology and their potential usefulness as biological markers but also revealed some new interesting targets for future therapies.
Collapse
|
4
|
Asher JE, Lamb JA, Brocklebank D, Cazier JB, Maestrini E, Addis L, Sen M, Baron-Cohen S, Monaco AP. A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12. Am J Hum Genet 2009; 84:279-85. [PMID: 19200526 DOI: 10.1016/j.ajhg.2009.01.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/06/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022] Open
Abstract
Synesthesia, a neurological condition affecting between 0.05%-1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.
Collapse
|
5
|
Cnops L, Hu TT, Burnat K, Van der Gucht E, Arckens L. Age-dependent alterations in CRMP2 and CRMP4 protein expression profiles in cat visual cortex. Brain Res 2006; 1088:109-19. [PMID: 16630590 DOI: 10.1016/j.brainres.2006.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
We monitored the protein expression profiles of collapsin response mediator protein 2 and 4 (CRMP2 and CRMP4) throughout cat primary visual area 17 at different postnatal ages. Single immunocytochemical stainings revealed a clear effect of cortical maturation on the spatial and laminar distribution profile of CRMP2 and CRMP4. In kittens of postnatal day 10 (P10) and 30 (P30), CRMP2 and CRMP4 immunoreactivity was exclusively present in fibers running perpendicular to the cortical surface and crossing all cortical layers, but was never found in neuronal cell bodies. The immunoreactive fibers were embedded in an intensely and homogeneously stained neuropil. In contrast, mature visual cortex immunocytochemistry located CRMP2 and CRMP4 in the somatodendritic compartment of neurons with a clear CRMP-specific lamination pattern. Similar to kitten, neuropil staining was clearly observed but showed a decreasing gradient from layer I to VI in adult area 17. Detailed analysis of cellular morphology and size classified the CRMP2- and CRMP4-immunopositive cells in distinct neuronal populations. Double labeling of CRMP2 or CRMP4 with the typical interneuron marker parvalbumin (PV) showed many double-labeled cells immunoreactive for CRMP4 and PV, but not for CRMP2 and PV, corroborating the cell type-specific character of each CRMP. Our present results clearly illustrate that CRMP2 and CRMP4 may play an important role in visual cortex, possibly providing different classes of neurons with the potential to form a functionally meaningful network, not only during development, but also in adulthood, coincident with the belief that CRMPs are involved in neurite growth and guidance.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|