1
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
3
|
Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers (Basel) 2022; 14:cancers14030701. [PMID: 35158967 PMCID: PMC8833533 DOI: 10.3390/cancers14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As cell cycle checkpoint mechanisms maintain genomic integrity, the inhibition of enzymes involved in these control mechanisms may increase the sensitivity of the cells to DNA damaging treatments. In this review, we summarize the knowledge in the field of brain tumor treatment with radiation therapy and cell cycle checkpoint inhibition via targeting ATM, ATR, CHK1, CHK2, and WEE1 kinases. Abstract Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Collapse
Affiliation(s)
- Tijana Vlatkovic
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Marlon R. Veldwijk
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Frank A. Giordano
- Department of Radiation Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Carsten Herskind
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
- Correspondence: ; Tel.: +49-621-383-3773
| |
Collapse
|
4
|
Zhang X, Xiao W, Chen K, Zhao Y, Ye F, Tang X, Du X. Decreased Serum EGF in First-episode and Chronic Schizophrenia Patients: Negative Correlation with Psychopathology. Sci Rep 2020; 10:6506. [PMID: 32300175 PMCID: PMC7162869 DOI: 10.1038/s41598-020-63544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/30/2020] [Indexed: 12/05/2022] Open
Abstract
Previous studies have demonstrated that neurotrophic factors may play a critical role in the severity of clinical symptoms in schizophrenia. However, it remains unknown whether serum levels of epidermal growth factor (EGF) in schizophrenia are similar to those observed in the case of other neurotrophic factors. Therefore, we compared serum EGF concentrations in first-episode drug-naive (FEP) patients and medicated chronic schizophrenic patients with healthy controls in order to explore whether EGF levels are related to psychopathological symptoms. We measured the serum levels of EGF in 78 first-episode medication-naive schizophrenia patients, 76 medicated chronic schizophrenic patients, and 75 healthy controls using the sandwich ELISA method. Disease severity were measured using the positive and negative syndrome scale (PANSS). Serum EGF levels showed a significant decrease in schizophrenia patients in comparison to healthy subjects. Serum EGF levels in FEP patients are indistinguishable from chronic cases. EGF levels were related to PANSS general symptom subscales in both FEP never-medicated and medicated patients. It is interesting that serum EGF levels were negatively correlated with the PANSS cognitive subscales, with the exception of the patients with chronic schizophrenia. Our preliminary results indicated that EGF may play a role in this illness and that it could be used as a potential biomarker of disease severity. Moreover, EGF may be associated with cognitive subscales of PANSS in FEP patients. Future studies should investigate the relationship between EGF and cognitive function as measured using standardized neuropsychological assessments to identify potential biomarkers related with cognition.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, P.R. China.
- School of mental health, Jining medical University, Jining, 272000, P.R. China.
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003, P.R. China
| | - KuanYu Chen
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003, P.R. China
- Department of Nursing, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yaqin Zhao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003, P.R. China
| | - Fei Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003, P.R. China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, 225003, P.R. China
- Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiangdong Du
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, P.R. China.
| |
Collapse
|
5
|
Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM, Herskind C. Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers (Basel) 2019; 11:cancers11030272. [PMID: 30813533 PMCID: PMC6468743 DOI: 10.3390/cancers11030272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
Radiotherapy is a mainstay in glioblastoma therapy as it not only directly targets tumor cells but also depletes the tumor microvasculature. The resulting intra-tumoral hypoxia initiates a chain of events that ultimately leads to re-vascularization, immunosuppression and, ultimately, tumor-regrowth. The key component of this cascade is overexpression of the CXC-motive chemokine ligand 12 (CXCL12), formerly known as stromal-cell derived factor 1 (SDF-1). We here review the role of CXCL12 in recruitment of pro-vasculogenic and immunosuppressive cells and give an overview on future and current drugs that target this axis.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Barbara Link
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), University Hospital Essen and German Cancer Consortium, Partner Site University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, 53105 Bonn, Germany.
| | - Frederik Wenz
- CEO, University Medical Center Freiburg, 79110 Freiburg, Germany.
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany.
| | - J Martin Brown
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
6
|
Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, Ohta Y, Matano M, Nanki K, Kawasaki K, Takahashi S, Sugimoto S, Iwasaki E, Takagi J, Itoi T, Kitago M, Kitagawa Y, Kanai T, Sato T. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell 2018; 22:454-467.e6. [PMID: 29337182 DOI: 10.1016/j.stem.2017.12.009] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Despite recent efforts to dissect the inter-tumor heterogeneity of pancreatic ductal adenocarcinoma (PDAC) by determining prognosis-predictive gene expression signatures for specific subtypes, their functional differences remain elusive. Here, we established a pancreatic tumor organoid library encompassing 39 patient-derived PDACs and identified 3 functional subtypes based on their stem cell niche factor dependencies on Wnt and R-spondin. A Wnt-non-producing subtype required Wnt from cancer-associated fibroblasts, whereas a Wnt-producing subtype autonomously secreted Wnt ligands and an R-spondin-independent subtype grew in the absence of Wnt and R-spondin. Transcriptome analysis of PDAC organoids revealed gene-expression signatures that associated Wnt niche subtypes with GATA6-dependent gene expression subtypes, which were functionally supported by genetic perturbation of GATA6. Furthermore, CRISPR-Cas9-based genome editing of PDAC driver genes (KRAS, CDKN2A, SMAD4, and TP53) demonstrated non-genetic acquisition of Wnt niche independence during pancreas tumorigenesis. Collectively, our results reveal functional heterogeneity of Wnt niche independency in PDAC that is non-genetically formed through tumor progression.
Collapse
Affiliation(s)
- Takashi Seino
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Tamagawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kosaku Nanki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sirirat Takahashi
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takao Itoi
- Department of Gastroenterology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
7
|
Milanovic D, Sticht C, Röhrich M, Maier P, Grosu AL, Herskind C. Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo. Oncotarget 2016; 6:28938-48. [PMID: 26362268 PMCID: PMC4745702 DOI: 10.18632/oncotarget.4727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022] Open
Abstract
The cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of resistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. In conclusion, combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Collapse
Affiliation(s)
- Dusan Milanovic
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Sticht
- Centre for Medical Research, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuel Röhrich
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Patrick Maier
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Lee KP, Choi NH, Kim JT, Park IS. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum. Nutr Res Pract 2015; 9:256-61. [PMID: 26060537 PMCID: PMC4460057 DOI: 10.4162/nrp.2015.9.3.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS Yacon (300 µg/mL) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and 300 µg/mL) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and 300 µg/mL) induced TIMP-1 expression. CONCLUSIONS On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.
Collapse
Affiliation(s)
- Kang Pa Lee
- Department of Medical Science, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Nan Hee Choi
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| | - Jin Teak Kim
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| | - In-Sik Park
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| |
Collapse
|
9
|
Preta G, Lotti V, Cronin JG, Sheldon IM. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J 2014; 29:1516-28. [PMID: 25550455 PMCID: PMC4396600 DOI: 10.1096/fj.14-265207] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/20/2014] [Indexed: 12/04/2022]
Abstract
The virulence of many Gram-positive bacteria depends on cholesterol-dependent cytolysins (CDCs), which form pores in eukaryotic cell plasma membranes. Pyolysin (PLO) from Trueperella pyogenes provided a unique opportunity to explore cellular responses to CDCs because it does not require thiol activation. Sublytic concentrations of PLO stimulated phosphorylation of MAPK ERK and p38 in primary stromal cells, and induced autophagy as determined by protein light-chain 3B cleavage. Although, inhibitors of MAPK or autophagy did not affect PLO-induced cytolysis. However, 10 μM 3-hydroxynaphthalene-2-carboxylic acid-(3,4-dihydroxybenzylidene)-hydrazide (Dynasore), a dynamin guanosine 5′-triphosphatase inhibitor, protected stromal cells against PLO-induced cytolysis as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (85 ± 17% versus 50 ± 9% cell viability), measuring extracellular ATP, and kinetic assays. This was a generalized mechanism because Dynasore also protected HeLa cells against streptolysin O. Furthermore, the effect was reversible, with stromal cell sensitivity to PLO restored within 30 minutes of Dynasore removal. The protective effect of Dynasore was not conferred by dynamin inhibition, induction of ERK phosphorylation, or Dynasore binding to PLO. Rather, Dynasore reduced cellular cholesterol and disrupted plasma membrane lipid rafts, similar to positive control methyl-β-cyclodextrin. Dynasore is a tractable tool to explore the complexity of cholesterol homeostasis in eukaryotic cells and to develop strategies to counter CDCs.—Preta, G., Lotti, V., Cronin, J. G., and Sheldon, I. M. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Virginia Lotti
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - I Martin Sheldon
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| |
Collapse
|