1
|
Michaud K, Gould PV, D’Astous M, Paquet C, Saikali S. 1p and/or 19q polysomy is an adverse prognostic factor in oligodendrogliomas, and easy to detect by automated FISH. PLoS One 2025; 20:e0322809. [PMID: 40315229 PMCID: PMC12047829 DOI: 10.1371/journal.pone.0322809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE To study the feasibility of automated analysis by FISH technique in the determination of the 1p and/or 19q polysomy in oligodendrogliomas (OGs) and to explore its prognostic value. METHODS We analyzed a retrospective monocentric series of 145 consecutive OGs with IDH mutation and 1p/19q codeletion. For all cases, automated FISH analyses were performed to determine 1p and/or 19q polysomy status and results were compared to manual analysis to verify the concordance of the two methods. Polysomic status was then compared to clinical and histological data, the CDKN2A deletion status when available, event free survival (EFS) and overall survival (OS). RESULTS Our study comprised 79 grade 2 OGs (O2) and 66 grade 3 OGs (O3). Polysomy of 1p and/or 19q was observed in 58 cases (40% of whole cohort) with a significant enrichment in the high grade cohort (59% versus 24%; p < 0,0001) and recurrent cases (55%). A majority of polysomic cases were copolysomic for 1p and 19q (75% of the polysomic cohort) rather than 1p or 19q single polysomy (21% and 4% respectively). Polysomy was correlated to high grade histological criteria of high mitotic and Mib1 proliferative indices (p = 0,002 and p = 0,0005 respectively) and to vascular proliferation (p = 0,0003). Univariate and multivariate analysis showed a significant correlation betwen polysomy and a shorter EFS and OS (p = 0,02 and p = 0,016 respectively). Concordance between manual and automated analysis was almost perfect for both 1p and 19q analysis (96 and 98% respectively, κ = 0,92 and 0,95 respectively). Automated analysis revealed that the large majority of polysomic signatures are represented by a small number of R/G signals (mainly 7 signatures) allowing a very easy implementation to pre-existent FISH platforms analysis software. CONCLUSION 1p and/ or 19q polysomy status represent a prognostic factor in OGs and can be easily determined by automated analysis. Our study supports the clinical interest to determine the polysomic status in all primitive or recurrent OGs and underline the benefits of automated analysis which offers a better archive storage and facilitates multicentric comparison.
Collapse
Affiliation(s)
- Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Myreille D’Astous
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Claudie Paquet
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stephan Saikali
- Department of Pathology and Molecular Genetics, Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
2
|
Zhao X, Zhang Y, Wang Y, Ren X, Zhang X, Wan H, Li M, Zhou D. Prognostic and clinical significance of contrast enhancement in WHO grade 2 oligodendrogliomas. J Neurooncol 2025; 172:481-490. [PMID: 39827421 DOI: 10.1007/s11060-024-04929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE To investigate the prognostic significance of contrast enhancement (CE) in grade 2 oligodendroglioma (ODG) and explore its clinical implications. METHODS Patients diagnosed with isocitrate dehydrogenase (IDH)-mutant, 1p/19q co-deleted ODG between 2009 and 2016 were retrospectively enrolled from a single institution. The presence of CE was identified on preoperative MRIs, and clinical, radiologic, and histopathological data that was extracted. Subgroup analyses were performed to evaluate differences in these factors and prognoses. Cox proportional hazards regression analyses were used to identify prognostic factors. RESULTS 258 patients with pathologically confirmed WHO grade 2 ODGs were included. The entire cohort was divided into the CE group (n = 133, 51.6%) and the non-CE group (n = 125, 48.4%). Patients with CE on preoperative MRI showed significantly worse progression-free survival (PFS) compared to those without CE (median PFS: 133 months vs. not reached; p < 0.001) and overall survival (OS) (mean OS: 151 months vs. 155 months; median OS: not reached; p = 0.021). Furthermore, CE presence was identified as an independent prognostic factor in the Cox multivariate analysis. Patients within the CE cohort were further categorized into strong and weak CE subgroups based on the pattern of CE. Logistic regression analysis revealed that non-frontal lobe location (OR = 3.287, p = 0.042), higher Ki-67 index (OR = 3.782, p = 0.027), and 1q/19p co-polysomy (OR = 9.658, p = 0.001) were significantly associated with a higher incidence of the strong CE in ODGs. Furthermore, ODG patients in the strong CE subgroup demonstrated the poorest survival outcomes. CONCLUSION CE on preoperative MRI is a valuable prognostic marker in the grade 2 ODGs, with strong CE indicating the poorest survival outcomes. Further validation through larger cohort studies will help confirm these findings and refine survival stratification in clinical practice.
Collapse
Affiliation(s)
- Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yutao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yonggang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaokang Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibin Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Dabiao Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Jiang H, Wang X, Chen X, Zhang S, Ren Q, Li M, Li M, Ren X, Lin S, Cui Y. Unraveling the heterogeneity of WHO grade 4 gliomas: insights from clinical, imaging, and molecular characterization. Discov Oncol 2025; 16:111. [PMID: 39899184 PMCID: PMC11790548 DOI: 10.1007/s12672-025-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
PURPOSE The 2021 WHO classification of central nervous system tumors introduced molecular criteria to stratify Grade 4 gliomas, which remain heterogeneous. This study aims to elucidate the clinical, radiological, and molecular characteristics of WHO Grade 4 gliomas, focusing on their prognostic implications and the development of a predictive model for astrocytoma IDH-mutant WHO Grade 4 (A4). METHODS A retrospective cohort of 223 patients from Beijing Tiantan Hospital was analyzed. Clinical, radiological, and histopathological data were combined with molecular profiling, focusing on IDH mutations, TERT promoter mutations, and MGMT methylation. A predictive model was developed using LASSO regression to distinguish A4 from glioblastomas and validated with an external dataset from UCSF. RESULTS The cohort included 201 glioblastomas (90.1%) and 22 A4 cases (9.9%). A4 tumors were associated with younger age, higher MGMT promoter methylation, lower rates of TERT mutations, and distinct radiological features, such as cortical non-enhancing tumor infiltration (CnCE). Patients with A4 demonstrated significantly better survival outcomes compared to glioblastoma patients (p < 0.001). The predictive model for A4, incorporating age, tumor margin, and CnCE, achieved an AUC of 0.890 in the training set and 0.951 in the validation set. CONCLUSION Integrating molecular and clinical criteria improves prognostication in Grade 4 gliomas. The predictive model developed in this study effectively identifies A4 tumors, facilitating more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Qingsen Ren
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
4
|
Zhu Q, Jiang H, Cui Y, Ren X, Li M, Zhang X, Li H, Shen S, Li M, Lin S. Intratumoral calcification: not only a diagnostic but also a prognostic indicator in oligodendrogliomas. Eur Radiol 2024; 34:3674-3685. [PMID: 37968476 DOI: 10.1007/s00330-023-10405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Calcification is a hallmark characteristic of oligodendroglioma (ODG) that may be used as a diagnostic factor, but its prognostic implications remain unclear. This study aimed to investigate the features of calcified ODGs and to evaluate the differences in survival between patients with calcified and noncalcified ODGs. METHODS We retrospectively reviewed the records of 305 consecutive patients who were diagnosed with IDH-mutant, 1p/19q codeleted ODG at our institution from July 2009 to August 2020. Patients with intratumoral calcification were identified. The clinical, radiologic, and molecular features of the patients in the calcified group and noncalcified group were recorded. Univariate and multivariate analyses were performed to identify prognostic factors. RESULTS Of the 305 patients, 112 (36.7%) were confirmed to have intratumoral calcification. Compared to ODGs without calcification, ODGs with calcifications had a larger tumor diameter; lower degree of resection; higher tumor grade; higher MGMT methylation level; higher Ki-67 index; and higher rates of midline crossing, enhancement, cyst, and 1q/19p copolysomy, and patients with calcification were more likely to receive chemoradiotherapy. ODGs with T2 hypointense calcification had a higher Hounsfield unit (HU) value on CT scans, and a lower degree of resection. Patients with T2 hypointense calcification ODGs had a shorter survival than those with non-hypointense calcification ODGs. ODGs with calcification and cysts showed a higher Ki-67 index, tumor grade, and enhanced rate, and the patients had an unfavorable overall survival (OS). Calcification was found to be a negative prognostic factor for both progression-free survival (PFS) and OS by univariate analysis, which was confirmed by the Cox proportional hazard model. CONCLUSIONS Calcification is a useful negative prognostic factor for PFS and OS in patients with ODGs and could therefore be helpful in guiding personalized treatment and predicting patient prognosis. CLINICAL RELEVANCE STATEMENT Calcification can serve as an independent prognostic factor for patients with oligodendroglioma and shows a vital role in guiding individualized treatment. KEY POINTS • Intratumoral calcification is an independent negative prognostic risk factor for progression-free survival and overall survival in oligodendroglioma patients. • Calcifications in oligodendroglioma can be divided into hypointense and non-hypointense subtypes based on T2-weighted imaging, and patients with T2-hypointense calcification oligodendrogliomas have worse prognosis. • Calcification concurrent with cysts indicates a more aggressive phenotype of oligodendrogliomas and a significantly reduced survival rate.
Collapse
Affiliation(s)
- Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, #49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, #119 Fanyang Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
5
|
Jiang H, Zhu Q, Wang X, Li M, Shen S, Yang C, Zhao X, Li M, Ma G, Zhao X, Chen X, Yang J, Lin S. Characterization and clinical implications of different malignant transformation patterns in diffuse low-grade gliomas. Cancer Sci 2023; 114:3708-3718. [PMID: 37332121 PMCID: PMC10475770 DOI: 10.1111/cas.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Malignant transformation (MT) of low-grade gliomas (LGGs) to a higher-grade variant seems inevitable, yet it remains unclear which LGG patients will progress to grade 3 or even directly to grade 4 after receiving a long course of treatment. To elucidate this, we conducted a retrospective cohort study based on 229 adults with recurrent LGG. Our study aimed to disclose the characteristics of different MT patterns and to build predictive models for patients with LGG. Patients were allocated into group 2-2 (n = 81, 35.4%), group 2-3 (n = 91, 39.7%), and group 2-4 (n = 57, 24.9%), based on their MT patterns. Patients who underwent MT showed lower Karnofsky performance scale (KPS) scores, larger tumor sizes, smaller extents of resection (EOR), higher Ki-67 indices, lower rates of 1p/19q codeletion, but higher rates of subventricular involvement, radiotherapy, chemotherapy, astrocytoma, and post-progression enhancement (PPE) compared with those in group 2-2 (p < 0.01). On multivariate logistic regression, 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score were independently associated with MT (p < 0.05). Survival analyses demonstrated that patients in group 2-2 had the longest survival, followed by group 2-3 and then group 2-4 (p < 0.0001). Based on these independent parameters, we constructed a nomogram model that exhibited superior potential (sensitivity: 0.864, specificity: 0.814, and accuracy: 0.843) compared with PPE in early prediction of MT. Combining the factors of 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score that were presented at initial diagnosis could precisely forecast the subsequent MT patterns of patients with LGG.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanwei Yang
- Department of Neurosurgery, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guofo Ma
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaofang Zhao
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaodong Chen
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Jun Yang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Neurological Diseases, Center of Brain TumorBeijing Institute for Brain Disorders and Beijing Key Laboratory of Brain TumorBeijingChina
| |
Collapse
|
6
|
Zhu Q, Shen S, Yang C, Li M, Zhang X, Li H, Zhao X, Li M, Cui Y, Ren X, Lin S. A prognostic estimation model based on mRNA-sequence data for patients with oligodendroglioma. Front Neurol 2022; 13:1074593. [PMID: 36588901 PMCID: PMC9795846 DOI: 10.3389/fneur.2022.1074593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background The diagnosis of oligodendroglioma based on the latest World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS 5) criteria requires the codeletion of chromosome arms 1p and 19q and isocitrate dehydrogenase gene (IDH) mutation (mut). Previously identified prognostic indicators may not be completely suitable for patients with oligodendroglioma based on the new diagnostic criteria. To find potential prognostic indicators for oligodendroglioma, we analyzed the expression of mRNAs of oligodendrogliomas in Chinese Glioma Genome Atlas (CGGA). Methods We collected 165 CGGA oligodendroglioma mRNA-sequence datasets and divided them into two cohorts. Patients in the two cohorts were further classified into long-survival and short-survival subgroups. The most predictive mRNAs were filtered out of differentially expressed mRNAs (DE mRNAs) between long-survival and short-survival patients in the training cohort by least absolute shrinkage and selection operator (LASSO), and risk scores of patients were calculated. Univariate and multivariate analyses were performed to screen factors associated with survival and establish the prognostic model. qRT-PCR was used to validate the expression differences of mRNAs. Results A total of 88 DE mRNAs were identified between the long-survival and the short-survival groups in the training cohort. Seven RNAs were selected to calculate risk scores. Univariate analysis showed that risk level, age, and primary-or-recurrent status (PRS) type were statistically correlated with survival and were used as factors to establish a prognostic model for patients with oligodendroglioma. The model showed an optimal predictive accuracy with a C-index of 0.912 (95% CI, 0.679-0.981) and harbored a good agreement between the predictions and observations in both training and validation cohorts. Conclusion We established a prognostic model based on mRNA-sequence data for patients with oligodendroglioma. The predictive ability of this model was validated in a validation cohort, which demonstrated optimal accuracy. The 7 mRNAs included in the model would help predict the prognosis of patients and guide personalized treatment.
Collapse
Affiliation(s)
- Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyi Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China,*Correspondence: Song Lin
| |
Collapse
|
7
|
Brandner S, McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Leal ES, Faulkner CL, Palmer A, Wragg C, Jefferies S, Vale L, Higgins JPT, Kurian KM. Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma: A comprehensive meta-analysis based on a Cochrane systematic review. Neuropathol Appl Neurobiol 2022; 48:e12790. [PMID: 34958131 PMCID: PMC9208578 DOI: 10.1111/nan.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH-mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost-effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR-based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost-effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations.
Collapse
Affiliation(s)
- Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Neurodegenerative Disease, Queen Square Instituite of NeurologyUniversity College LondonLondonUK
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Hayley E. Jones
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Ashleigh Kernohan
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Tomos Robinson
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Claire L. Faulkner
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | | | - Luke Vale
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Julian P. T. Higgins
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Kathreena M. Kurian
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Bristol Medical School: Brain Tumour Research Centre, Public Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
8
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Kokash A, Carlson JE. Phantosmia and dysgeusia as the first presentation of glioblastoma. Proc AMIA Symp 2021; 35:248-249. [DOI: 10.1080/08998280.2021.1990703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Atef Kokash
- Department of Internal Medicine, Baylor Scott & White Medical Center, Round Rock, Texas
| | - John Emil Carlson
- Department of Internal Medicine, Baylor Scott & White Medical Center, Round Rock, Texas
| |
Collapse
|
10
|
Jiang H, Yu K, Cui Y, Ren X, Li M, Zhang G, Yang C, Zhao X, Zhu Q, Lin S. Differential Predictors and Clinical Implications Associated With Long-Term Survivors in IDH Wildtype and Mutant Glioblastoma. Front Oncol 2021; 11:632663. [PMID: 34055603 PMCID: PMC8155513 DOI: 10.3389/fonc.2021.632663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive intracranial tumor which can be divided into two subtypes based on status of isocitrate dehydrogenase (IDH). A small fraction of patients after receiving standard treatment can be long-term survivors (LTS). This study was designed to disclose the predictors and clinical implications associated with LTS in IDH wildtype and mutant GBM. Methods Patients who survived beyond five years after diagnosis of GBM were defined as LTS, while those with a survival less than one year were defined as short-term survivors (STS). A total of 211 patients with diagnosis of GBM in Beijing Tiantan Hospital from January 2007 to January 2015 were enrolled, including 44 (20.9%) LTS and 167 (79.1%) STS. The clinical, radiological and molecular features between groups were systematically compared. Results Compared with STS, LTS were a subgroup of patients with a younger age at diagnosis (P=0.006), a higher KPS score (P=0.011), higher rates of cystic change (P=0.037), O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (P=0.007), and IDH mutation (P=0.049), and more likely to have undergone gross total resection (P<0.001). Survival analysis demonstrated that LTS with wildtype IDH conferred a longer progression-free survival (66.0 vs. 27.0 months, P=0.04), but a shorter post-progression survival (46.5 months vs. not reached, P=0.0001) than those of LTS with mutant IDH. LTS with mutant IDH showed a trend towards increased survival after receiving re-operation (P=0.155) and reirradiation (P=0.127), while this clinical benefit disappeared in the subset of LTS with wildtype IDH (P>0.05). Conclusion The prognostic value and therapeutic implications associated with LTS in GBM population significantly differed on the basis of IDH status. Our findings provide a new approach for physicians to better understand the two subtypes of GBM, which may assist in making more tailored treatment decisions for patients.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Guobin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
McAleenan A, Jones HE, Kernohan A, Faulkner CL, Palmer A, Dawson S, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JPT, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Hippokratia 2019. [DOI: 10.1002/14651858.cd013387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandra McAleenan
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Hayley E Jones
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Ashleigh Kernohan
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Claire L Faulkner
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Abigail Palmer
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Dawson
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Christopher Wragg
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Jefferies
- Addenbrooke's Hospital; Department of Oncology; Hills Road Cambridge UK CB2 0QQ
| | - Sebastian Brandner
- The National Hospital for Neurology and Neurosurgery; Division of Neuropathology and Department of Neurodegeneration; University College Hospital NHS Foundation Trust and UCL Institute of Neurology Queen Square London UK WC1N 3BG
| | - Luke Vale
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Julian P T Higgins
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Kathreena M Kurian
- University of Bristol; Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences; Oakfield House, Oakfield Grove Bristol UK BS8 2BN
| |
Collapse
|
12
|
Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget 2017; 8:20354-20361. [PMID: 27888628 PMCID: PMC5386767 DOI: 10.18632/oncotarget.13555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The latest World Health Organization (WHO) classification of tumors of the central nervous system (CNS) integrates both histological and molecular features in the definition of diagnostic entities. This new approach enrolls novel entities of gliomas. In this study, we aimed to reveal the epidemiological characteristics, including age at diagnosis, gender ratio, tumor distribution and survival, of these new entities. We retrospectively reclassified 1210 glioma samples according to the 2016 CNS WHO diagnostic criteria. In our cohort, glioblastoma multiforme (GBM) with wildtype isocitrate dehydrogenase (IDH) was the most common malignant tumor in the brain. Almost all gliomas were more prevalent in males, especially in the cluster of WHO grade III gliomas and IDH-wildtype GBM. Age at diagnosis was directly proportional to tumor grade. With respect to the distribution by histology, we found that gliomas concurrent with IDH-mutant and 1p/19q-codeleted or with single IDH-mutant were mainly distributed in frontal lobe, while those with IDH-wildtype were dominant in temporal lobe. Lesions located in insular lobe were more likely to be IDH-mutant astrocytoma. In summary, our results elucidated the epidemiological characteristics as well as the regional constituents of these new gliomas entities, which could bring insights into tumorigenesis and personalized treatment of Chinese glioma population.
Collapse
|
13
|
1q/19p co-polysomy predicts longer survival in patients with astrocytic gliomas. Oncotarget 2017; 8:67104-67116. [PMID: 28978019 PMCID: PMC5620159 DOI: 10.18632/oncotarget.17947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, we reported that 1q/19p co-polysomy predicted poor prognosis in oligodendroglial tumors. In this study, we aimed to retrospectively analyze the prognostic significance of 1q/19p polysomy in two large cohorts of astrocytic gliomas classified by the 2007 and 2016 WHO classification of tumors of the central nervous system. 1q/19p polysomy was detected using the FISH method, and factors that correlated with polysomy were analyzed by logistic regression. Survival analysis was used to identify independent prognostic factors correlated with survival. In the WHO2007 astrocytic glioma cohort (N=421), co-polysomy was associated with a younger age, whereas single polysomy was associated with higher tumor grades and a higher Ki-67 index (P<0.05). Co-polysomy predicted longer survival, and single polysomy predicted shorter survival (P<0.05). In multivariate analysis, co-polysomy maintained an independent prognostic impact on survival (P=0.001) after adjustment for age, KPS, grade, removal degree, tumor size, Ki-67 index, and IDH1/2. In the WHO2016 cohort (N=572), we validated the prognostic merit of co-polysomy after adjusting for related factors. In conclusion, 1q/19p co-polysomy added prognostic information in cases of astrocytic glioma and could be used for molecular stratification of this disease.
Collapse
|
14
|
Molecular-genetic and clinicopathological prognostic factors in patients with gliomas showing total 1p19q loss: gain of chromosome 19p and histological grade III negatively correlate with patient's prognosis. J Neurooncol 2016; 132:119-126. [PMID: 28025770 DOI: 10.1007/s11060-016-2344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
Although 1p19q codeleted gliomas are the most favorable molecular subgroup of lower-grade gliomas, there are cases with early recurrence or short survival. The objective of this study was to elucidate molecular-genetic and clinicopathological prognostic factors in patients with gliomas showing total 1p19q loss. The study included 57 consecutive patients with codeleted gliomas who were operated at Keio University Hospital between 1990 and 2010. These patients were assessed for chromosomal copy number aberrations, promoter methylation status of the O6-methylguanine-DNA methyltransferase gene (MGMT), and demographic and clinicopathological prognostic factors in diffuse gliomas. No significant difference was observed in the overall survival (OS) of the patients with respect to age (≥40 years vs. <40 years), degree of resection, maximum tumor diameter (≥5 cm vs. <5 cm), histological subtype, and MGMT promoter methylation status. Gain of chromosome 19p and grade III histology were associated with shorter OS (P = 0.019, 0.061, respectively). Gain of 19p and histological grade III might be negative prognostic factors for the patients with gliomas showing total 1p19q loss. Further investigation is warranted to confirm these notions.
Collapse
|
15
|
Dickinson PJ, York D, Higgins RJ, LeCouteur RA, Joshi N, Bannasch D. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans. J Neuropathol Exp Neurol 2016; 75:700-10. [PMID: 27251041 DOI: 10.1093/jnen/nlw042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/16/2022] Open
Abstract
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy.
Collapse
Affiliation(s)
- Peter J Dickinson
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California.
| | - Dan York
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Robert J Higgins
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Richard A LeCouteur
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Nikhil Joshi
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| | - Danika Bannasch
- From the Departments of Surgical and Radiological Sciences (PJD, DY, RAL), Pathology, Microbiology and Immunology (RJH), and Population Health & Reproduction (DB), School of Veterinary Medicine, University of California, Davis, and Bioinformatics Core, UC Davis Genome Center (NJ) University of California, Davis, California
| |
Collapse
|
16
|
Highlights from the Literature. Neuro Oncol 2016. [DOI: 10.1093/neuonc/now028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Chamberlain MC, Born D. Prognostic significance of relative 1p/19q codeletion in oligodendroglial tumors. J Neurooncol 2015; 125:249-51. [DOI: 10.1007/s11060-015-1906-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/29/2015] [Indexed: 11/30/2022]
|
18
|
Pinkham M, Telford N, Whitfield G, Colaco R, O'Neill F, McBain C. FISHing Tips: What Every Clinician Should Know About 1p19q Analysis in Gliomas Using Fluorescence in situ Hybridisation. Clin Oncol (R Coll Radiol) 2015; 27:445-53. [DOI: 10.1016/j.clon.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022]
|
19
|
1p/19q-driven prognostic molecular classification for high-grade oligodendroglial tumors. J Neurooncol 2014; 120:607-14. [DOI: 10.1007/s11060-014-1593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
|