1
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
2
|
Lucchetti D, Colella F, d'Amati A, Servidei T, Gessi M, Chiara P, Cellini B, Toma F, Giacò L, Persiani F, Perelli L, Mantini G, Genovese G, Masetto I, Ruggiero A, Sgambato A. Spatial Analysis Identifies CD147 as a Novel Marker of High-Grade Childhood Posterior Fossa Ependymoma. J Transl Med 2025; 105:104175. [PMID: 40250710 DOI: 10.1016/j.labinv.2025.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Ependymoma (EPN) is the third most common malignant tumor of the central nervous system in children. The spatial and temporal heterogeneity of cancer cell populations can impact the ability of EPN to overcome microenvironmental constraints. Data set analysis revealed that CD147 expression is increased in glioma, and its expression correlates with detrimental survival and higher mutational burden. We performed spatial phenotyping of tumor microenvironment in childhood posterior fossa type A EPN (PFA-EPN) central nervous system World Health Organization grade 2 (G2; n = 5) and grade 3 (G3; n = 7). Tumors were comprehensively assessed using multiplex immunofluorescence panels to detect immune, microglial, endothelial, and tumor cells. We observed significant differences in immune cell populations according to grading: a high number of T cells and cytotoxic T cell infiltration were features of G2 when compared with G3 cancers. The distance between CD4+ and CD8+ cells was lower in G3 tumors, highlighting an increase in cell interactions between T-cell populations in more aggressive tumors. Two tumor-associated macrophage subsets with distinct functional phenotypes (CD68+MCP1+ and CD68+CD44+), associated with tumor progression, were previously identified by single-cell RNA sequencing analyses in spinal EPN. We demonstrated that the CD68+CD44+ population was higher in G3 compared with G2 PFA. CD147+ microglia cells were closer to CD8+ cells and CD147+ tumor-proliferating cells in G3 than G2 counterparts. In G3 tumors, CD4+ cells were more distant from CD147+ microglial cells and from CD8+ lymphocytes and were closer to CD147+ tumor-proliferating cells. We provided evidence that CD147+ microglial cells could be playing a key role in PFA-EPN progression, promoting CD8+ T cells' exclusion. These findings highlight grading-related differences in PFA-EPN tumor microenvironment.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Antonio d'Amati
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Italy; Neuropathology Unit, Division of Histopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Division of Histopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Parillo Chiara
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Beatrice Cellini
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Federica Toma
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Federica Persiani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulia Mantini
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy.
| | - Alessandro Sgambato
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
3
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Wang S, Wei W, Yuan Y, Sun B, Yang D, Liu N, Zhao X. Chimeric antigen receptor T cells targeting cell surface GRP78 efficiently kill glioblastoma and cancer stem cells. J Transl Med 2023; 21:493. [PMID: 37481592 PMCID: PMC10362566 DOI: 10.1186/s12967-023-04330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is recognized as among the most aggressive forms of brain tumor. Patients typically present with a five-year survival rate of less than 6% with traditional surgery and chemoradiotherapy, which calls for novel immunotherapies like chimeric antigen receptor T (CAR-T) cells therapy. In response to endoplasmic reticulum (ER) stress in multiple tumor cells including GBM, the glucose-regulated protein 78 (GRP78) expression increases and the protein is partially translocated to the cell surface, while it is restricted to the cytoplasm and the nucleus in normal cells. METHODS In this study, to target the cell surface GRP78 (csGRP78), CAR-T cells based on its binding peptide were generated. In vitro two GBM cell lines and glioma stem cells (GSCs) were used to confirm the localization of csGRP78 and the cytotoxicity of the CAR-T cells. In vivo a GBM xenograft model was used to assess the killing activity and the safety of the CAR-T cells. RESULTS We confirmed the localization of csGRP78 at the cell surface of two GBM cell lines (U-251MG and U-87MG) and in GSCs. Co-culture experiments revealed that the CAR-T cells could specifically kill the GBM tumor cells and GSCs with specific IFN-γ release. Furthermore, in the tumor xenograft model, the CAR-T cells could decrease the number of GSCs and significantly suppress tumor cell growth. Importantly, we found no obvious off-target effects or T cell infiltration in major organs following systemic administration of these cells. CONCLUSIONS The csGRP78 targeted CAR-T cells efficiently kill GBM tumor cells and GSCs both in vitro and in vivo, and ultimately suppress the xenograft tumors growth without obvious tissue injuries. Therefore, our study demonstrates that csGRP78 represents a valuable target and the csGRP78-targeted CAR-T cells strategy is an effective immunotherapy against GBM.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yuan
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Liu
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhao
- Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Zhi Z, Sun Q, Tang W. Research advances and challenges in tissue-derived extracellular vesicles. Front Mol Biosci 2022; 9:1036746. [PMID: 36589228 PMCID: PMC9797684 DOI: 10.3389/fmolb.2022.1036746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EV) are vesicular vesicles with phospholipid bilayer, which are present in biological fluids and extracellular microenvironment. Extracellular vesicles serve as pivotal mediators in intercellular communication by delivering lipids, proteins, and RNAs to the recipient cells. Different from extracellular vesicles derived from biofluids and that originate from cell culture, the tissue derived extracellular vesicles (Ti-EVs) send us more enriched and accurate information of tissue microenvironment. Notably, tissue derived extracellular vesicles directly participate in the crosstalk between numerous cell types within microenvironment. Current research mainly focused on the extracellular vesicles present in biological fluids and cell culture supernatant, yet the studies on tissue derived extracellular vesicles are increasing due to the tissue derived extracellular vesicles are promising agents to reflect the occurrence and development of human diseases more accurately. In this review, we aimed to clarify the characteristics of tissue derived extracellular vesicles, specify the isolation methods and the roles of tissue derived extracellular vesicles in various diseases, including tumors. Moreover, we summarized the advances and challenges of tissue derived extracellular vesicles research.
Collapse
|
6
|
Aggarwal P, Luo W, Pehlivan KC, Hoang H, Rajappa P, Cripe TP, Cassady KA, Lee DA, Cairo MS. Pediatric versus adult high grade glioma: Immunotherapeutic and genomic considerations. Front Immunol 2022; 13:1038096. [PMID: 36483545 PMCID: PMC9722734 DOI: 10.3389/fimmu.2022.1038096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
High grade gliomas are identified as malignant central nervous tumors that spread rapidly and have a universally poor prognosis. Historically high grade gliomas in the pediatric population have been treated similarly to adult high grade gliomas. For the first time, the most recent classification of central nervous system tumors by World Health Organization has divided adult from pediatric type diffuse high grade gliomas, underscoring the biologic differences between these tumors in different age groups. The objective of our review is to compare high grade gliomas in the adult versus pediatric patient populations, highlighting similarities and differences in epidemiology, etiology, pathogenesis and therapeutic approaches. High grade gliomas in adults versus children have varying clinical presentations, molecular biology background, and response to chemotherapy, as well as unique molecular targets. However, increasing evidence show that they both respond to recently developed immunotherapies. This review summarizes the distinctions and commonalities between the two in disease pathogenesis and response to therapeutic interventions with a focus on immunotherapy.
Collapse
Affiliation(s)
- Payal Aggarwal
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | | | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Prajwal Rajappa
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States,Department of Medicine, New York Medical College, Valhalla, NY, United States,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States,*Correspondence: Mitchell S. Cairo,
| |
Collapse
|
7
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
8
|
Lin YJ, Mashouf LA, Lim M. CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Front Immunol 2022; 13:817296. [PMID: 35265074 PMCID: PMC8899093 DOI: 10.3389/fimmu.2022.817296] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T cells) are engineered cells expressing a chimeric antigen receptor (CAR) against a specific tumor antigen (TA) that allows for the identification and elimination of cancer cells. The remarkable clinical effect seen with CAR T cell therapies against hematological malignancies have attracted interest in developing such therapies for solid tumors, including brain tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and is associated with poor prognosis due to its highly aggressive nature. Pediatric brain cancers are similarly aggressive and thus are a major cause of pediatric cancer-related death. CAR T cell therapy represents a promising avenue for therapy against these malignancies. Several specific TAs, such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and HER2, have been targeted in preclinical studies and clinical trials. Unfortunately, CAR T cells against brain tumors have showed limited efficacy due to TA heterogeneity, difficulty trafficking from blood to tumor sites, and the immunosuppressive tumor microenvironment. Here, we review current CAR T cell approaches in treating cancers, with particular focus on brain cancers. We also describe a novel technique of focused ultrasound controlling the activation of engineered CAR T cells to achieve the safer cell therapies. Finally, we summarize the development of combinational strategies to improve the efficacy and overcome historical limitations of CAR T cell therapy.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leila A Mashouf
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
9
|
Song Y, Bai L, Yan F, Chen C. Inhibition of EMMPRIN by microRNA-124 suppresses the growth, invasion and tumorigenicity of gliomas. Exp Ther Med 2021; 22:930. [PMID: 34306199 PMCID: PMC8281370 DOI: 10.3892/etm.2021.10362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/17/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miR) are a group of non-coding, small RNAs, 18-20 nucleotides in length, that are frequently involved in the development of a variety of different types of cancer, including glioma, which is a type of severe tumor in the brain. Previous studies reported that miR-124 levels were downregulated in glioma specimens; however, the potential role of miR-124 in glioma currently remains unclear. The present study performed experiments, including dual-luciferase reporter assay (DLRA), MTT assay, transwell assay and flow cytometry, with the aim of elucidating the molecular mechanism of miR-124 in glioma. The results indicated that miR-124 expression was decreased in glioma tissues, accompanied by the increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN). The expression of EMMPRIN was inhibited by miR-124 transfection. The DLRA results revealed that EMMPRIN directly targets miR-124. Furthermore, upon overexpression of miR-124 in the U87 cells, cell proliferation was significantly inhibited, apoptosis was increased, and cell migration and invasion were decreased. Furthermore, tumor growth was blocked by miR-124 in mice. Based on these results, the present study concluded that miR-124 is critical for amelioration of glioma by targeting EMMPRIN, thereby acting as a tumor suppressor. Thus, miR-124/EMMPRIN constitutes a plausible basis for the treatment of glioma.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Lei Bai
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Feiping Yan
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| | - Chen Chen
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shanxi 719000, P.R. China
| |
Collapse
|
10
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Downregulation of CyclophilinA/CD147 Axis Induces Cell Apoptosis and Inhibits Glioma Aggressiveness. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7035847. [PMID: 32775435 PMCID: PMC7396009 DOI: 10.1155/2020/7035847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
Gliomas are the most common primary tumors in the brain with poor prognosis. Previous studies have detected high expression of Cyclophilin A (CyPA) and CD147, respectively, in glioma. However, the correlation between their expressions and glioma prognosis remains unclear. Here, we investigated the expression of CyPA and CD147 in different types of glioma and characterized their relationships with clinical features, prognosis, and cell proliferation. Results showed that CyPA and CD147 expressions were elevated in higher grade gliomas. Moreover, the knockdown of CyPA and CD147 by RNA interference significantly induced cell express apoptosis biomarkers such as Annexin V and inhibited proliferation biomarkers like EdU in glioma cells. In summary, our findings revealed that high expression of CyPA and CD147 correlated with glioma grades. Moreover, downregulation of the Cyclophilin A/CD147 axis induces cell apoptosis and inhibits glioma aggressiveness. Those indicating CyPA and CD147 could be used as both potential predictive biomarkers and a potential therapeutic target.
Collapse
|
12
|
A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol (Dordr) 2020; 43:695-707. [PMID: 32474852 DOI: 10.1007/s13402-020-00517-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Radio-resistance is recognized as a main factor in the failure of radiotherapy in oesophageal squamous cell carcinoma (ESCC). Aberrant cell surface glycosylation has been reported to correlate with radio-resistance in different kinds of tumours. However, glycomic alterations and the corresponding enzymes associated with ESCC radio-resistance have not yet been defined. METHODS Two radioresistant cell lines, EC109R and TE-1R, were established from parental ESCC cell lines EC109 and TE-1 by fractionated irradiation. A lectin microarray was used to screen for altered glycan patterns. RNA-sequencing (RNA-seq) was employed to identify differentially expressed glycosyltransferases. Cell Counting Kit-8, colony formation and flow cytometry assays were used to measure cell viability and radiosensitivity. Expression of glycosyltransferase in ESCC tissues was assessed by immunohistochemistry. In vivo radiosensitivity was analysed using a nude mouse xenograft model. Downstream effectors of the enzyme were verified using a lectin-based pull-down assay combined with mass spectrometry. RESULTS We found that EC109R and TE-1R cells were more resistant to irradiation than the parental EC109 and TE-1 cells. Using lectin microarrays combined with RNA sequencing, we found that α1, 6-fucosyltransferase (FUT8) was overexpressed in the radioresistant ESCC cell lines. Both gain- and loss-of-function studies confirmed that FUT8 regulates the sensitivity of ESCC cells to irradiation. Importantly, we found that high FUT8 expression was positively linked to radio-resistance and a poor prognosis in ESCC patients who received radiation therapy. Moreover, FUT8 inhibition suppressed the growth and formation of xenograft tumours in nude mice after irradiation. Using a lectin-based pull-down assay and mass spectrometry, we found that CD147 could be glycosylated by FUT8. As expected, inhibition of CD147 partly reversed FUT8-induced radio-resistance in ESCC cells. CONCLUSIONS Our results indicate that FUT8 functions as a driver of radio-resistance in ESCC by targeting CD147. Therefore, FUT8 may serve as a marker for predicting the response to radiation therapy in patients with ESCC.
Collapse
|
13
|
Zeng F, Chen L, Liao M, Chen B, Long J, Wu W, Deng G. Laparoscopic versus open gastrectomy for gastric cancer. World J Surg Oncol 2020; 18:20. [PMID: 31987046 PMCID: PMC6986035 DOI: 10.1186/s12957-020-1795-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background Compared with open gastrectomy (OG), laparoscopic gastrectomy (LG) for gastric cancer has achieved rapid development and popularities in the past decades. However, lack of comprehensive analysis in long-term oncological outcomes such as recurrence and mortality hinder its full support as a valid procedure. Therefore, there are still debates on whether one of these options is superior. Aim To evaluate the primary and secondary outcomes of laparoscopic versus open gastrectomy for gastric cancer patients Methods Two authors independently extracted study data. Risk ratio (RR) with 95% confidence interval (CI) was calculated for binary outcomes, mean difference (MD) or the standardized mean difference (SMD) with 95% CI for continuous outcomes, and the hazard ratio (HR) for time-to-event outcomes. Review Manager 5.3 and STATA software were used for the meta-analysis. Results Seventeen randomized controlled trials (RCTs) involving 5204 participants were included in this meta-analysis. There were no differences in the primary outcomes including the number of lymph nodes harvested during operation, severe complications, short-term and long-term recurrence, and mortality. As for secondary outcomes, compared with the OG group, longer operative time was required for patients in the LG group (MD = 58.80 min, 95% CI = [45.80, 71.81], P < 0.001), but there were less intraoperative blood loss (MD = − 54.93 ml, 95% CI = [− 81.60, − 28.26], P < 0.001), less analgesic administration (frequency: MD = − 1.73, 95% CI = [− 2.21, − 1.24], P < 0.001; duration: MD = − 1.26 days, 95% CI = [− 1.40, − 1.12], P < 0.001), shorter hospital stay (MD = − 1.37 days, 95% CI = [− 2.05, − 0.70], P < 0.001), shorter time to first flatus (MD = − 0.58 days, 95% CI = [− 0.79, − 0.37], P < 0.001), ambulation (MD = − 0.50 days, 95% CI = [− 0.90, − 0.09], P = 0.02) and oral intake (MD = − 0.64 days, 95% CI = [− 1.24, − 0.03], P < 0.04), and less total complications (RR = 0.81, 95% CI = [0.71, 0.93], P = 0.003) in the OG group. There was no difference in blood transfusions (number, quantity) between these two groups. Subgroup analysis, sensitivity analysis, and the adjustment of Duval’s trim and fill methods for publication bias did not change the conclusions. Conclusion LG was comparable to OG in the primary outcomes and had some advantages in secondary outcomes for gastric cancer patients. LG is superior to OG for gastric cancer patients.
Collapse
Affiliation(s)
- Furong Zeng
- Xiangya hospital, Central South University, Changsha, China
| | - Lang Chen
- Xiangya hospital, Central South University, Changsha, China
| | - Mengting Liao
- Xiangya hospital, Central South University, Changsha, China
| | - Bin Chen
- Taoyuan People's Hospital, Taoyuan, Changde, China
| | - Jing Long
- Xiangya hospital, Central South University, Changsha, China
| | - Wei Wu
- Xiangya hospital, Central South University, Changsha, China.
| | - Guangtong Deng
- Xiangya hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Weng Y, Chen T, Ren J, Lu D, Liu X, Lin S, Xu C, Lou J, Chen X, Tang L. The Association Between Extracellular Matrix Metalloproteinase Inducer Polymorphisms and Coronary Heart Disease: A Potential Way to Predict Disease. DNA Cell Biol 2020; 39:244-254. [PMID: 31928425 DOI: 10.1089/dna.2019.5015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) had been reported to be involved in the occurrence and development of coronary heart disease (CHD) in previous studies. This study aimed to investigate whether single nucleotide polymorphisms of EMMPRIN and matrix metalloproteinase-9 (MMP-9) contributed to the onset and severity of CHD. One thousand seventy patients suspected to have CHD were enrolled into the study. Each patient had undergone coronary angiogram, and the severity of coronary artery stenosis was assessed by Gensini score. Eight hundred twelve patients were confirmed to have CHD, while 258 patients were selected as non-CHD control. All patients were genotyped for five EMMPRIN polymorphisms (rs8259, rs28915400, rs4919859, rs6758, and rs8637) and one MMP-9 polymorphism (rs3918242) by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing. EMMPRIN polymorphism rs8259 and MMP-9 polymorphism rs3918242 were found to be associated with CHD (rs8259: AT vs. AA, adjusted odds ratio [OR] = 2.038, adjusted 95% confidence interval [CI] = 1.080-3.847, p = 0.028; rs3918242: CT vs. CC, adjusted OR = 0.607, adjusted 95% CI = 0.403-0.916, p = 0.017, TT vs. CC, adjusted OR = 2.559, adjusted 95% CI = 1.326-4.975, p = 0.006). No crossover effects were observed although a single environmental or genetic factor had an impact on the occurrence of CHD. The value of the Gensini score revealed that severity of CHD decreased in the rs3918242 CT carriers in both the male and female population. Our study suggested that EMMPRIN rs8259 and MMP-9 rs3918242 polymorphisms may contribute to pathological process of CHD. It could play a critical role in the prediction of CHD.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Tingting Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianfei Ren
- Department of Internal Medicine, Lihuili Hospital Affiliated Ningbo University, Ningbo, China
| | - Difan Lu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Senna Lin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Chenkai Xu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.,Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Long J, Li J, Yuan X, Tang Y, Deng Z, Xu S, Zhang Y, Xie H. Potential association between rosacea and cancer: A study in a medical center in southern China. J Dermatol 2019; 46:570-576. [PMID: 31120152 DOI: 10.1111/1346-8138.14918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that rosacea increases the risk of systemic diseases, but studies of the relationships between rosacea and cancer are rare. Aimed to assess the relationship between rosacea and cancer, a total of 7548 patients with confirmed internal malignancies and 8340 cancer-free individuals aged 18 years or more were included in this study from November 2015 to October 2017. Clinical characteristics, personal history and laboratory data were recorded when patients were diagnosed with rosacea. Logistic regression analyses were performed to analyze associations between cancer and rosacea. We found rosacea significantly affected more women than men in both cancer and cancer-free group. The data showed there was no relationship between rosacea and lung, gastrointestinal, nasopharyngeal and gynecological cancer. However, rosacea was significantly associated with the increased risk of breast cancer and glioma, but negatively associated with the risk of hematological cancer. Of the 190 female breast cancer patients with rosacea, 98.95% had the erythematotelangiectatic subtype of rosacea, 48.42% had chloasma and 76.31% of them were Fitzpatrick skin type III and IV. In our binary regression model, breast cancer patients with rosacea had a higher prevalence of estrogen receptor-positive status, lower high-density lipoprotein levels and higher low-density lipoprotein than patients with breast cancer but no rosacea. Our findings indicate that rosacea is significantly associated with higher incidence of breast cancer, glioma and lower prevalence of hematological cancer.
Collapse
Affiliation(s)
- Juan Long
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yuan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Li H, Wang L, Shi S, Xu Y, Dai X, Li H, Wang J, Zhang Q, Wang Y, Sun S, Li Y. The Prognostic and Clinicopathologic Characteristics of OCT4 and Lung Cancer: A Meta-Analysis. Curr Mol Med 2019; 19:54-75. [PMID: 30854966 DOI: 10.2174/1566524019666190308163315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Objective:The relationship between OCT4 and clinicopathological features in lung cancer is shown to be controversial in recent publications. Therefore, we conducted this meta-analysis to quantitatively investigate the prognostic and clinicopathological characteristics of OCT4 in lung cancer.Methods:A comprehensive literature search of the PubMed, EMBASE, Cochrane Library, WOS, CNKI and Wanfang databases was performed to identify studies. Correlations between OCT4 expression and survival outcomes or clinicopathological features were analyzed using meta-analysis methods.Results:Twenty-one studies with 2523 patients were included. High OCT4 expression showed a poorer overall survival (OS) (univariate: HR= 2.00, 95% CI = (1.68, 2.39), p<0.0001; multivariate: HR= 2.43, 95% CI = (1.67, 3.55), p<0.0001) and median overall survival (MSR = 0.51, 95% CI = (0.44, 0.58), p < 0.0001), disease-free survival (DFS) (HR= 2.18, 95% CI = (1.30, 3.67), p = 0.003) and poorer disease-specific survival (DSS) (HR= 2.23, 95% CI = (1.21, 4.11), p = 0.010). Furthermore, high OCT4 expression was found to be related with lower 5 year disease-specific survival rate (OR= 0.24, 95% CI = (0.14, 0.41), p<0.0001) and 10 year overall survival rate (OR= 0.22, 95% CI = (0.12, 0.40), p=0.0001). Additionally, OCT4-high expression was also strongly associated with higher clinical TNM stage, lymph node metastasis, tumor distant metastasis, higher histopathologic grade, but not related with gender, smoking status, tumor size and histologic type of lung cancer.Conclusion:OCT4 over-expression in lung cancer was strongly related to poorer clinicopathological features and worse survival outcomes, which suggests that OCT4 could be a valuable prognostic marker in lung cancer.
Collapse
Affiliation(s)
- Hui Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liwen Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shupeng Shi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yadong Xu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuejiao Dai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongru Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiong Zhang
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Yonggang Wang
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Shuming Sun
- School of Life Sciences, Central South University, Changsha, 410008, China
| | - Yanping Li
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Guo N, Miao R, Gao X, Huang D, Hu Z, Ji N, Nan Y, Jiang F, Gou X. Shikonin inhibits proliferation and induces apoptosis in glioma cells via downregulation of CD147. Mol Med Rep 2019; 19:4335-4343. [PMID: 30942433 PMCID: PMC6472142 DOI: 10.3892/mmr.2019.10101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Shikonin, a traditional Chinese medicine, has been identified as being capable of inducing apoptosis in various tumors, including glioma, and is thus considered to be a promising therapeutic agent for tumor therapy. However, little is known about the molecular mechanism of shikonin in glioma. The present study investigated the influence of shikonin on the proliferation and apoptosis of glioma cells U251 and U87MG and explored the potential molecular mechanisms. It was identified that shikonin was able to induce apoptosis in human glioma cells in a time‑ and dose‑dependent manner, and a decreased expression level of cluster of differentiation (CD)147 was observed in shikonin‑treated U251 and U87MG cells. Knockdown of CD147 inhibited U251 and U87MG cell growth, whereas CD147 overexpression enhanced cell growth and decreased shikonin‑induced apoptosis. Additionally, an increased expression level of CD147 suppressed the elevated production of reactive oxygen species and mitochondrial membrane potential levels induced by shikonin. The data indicated that shikonin‑induced apoptosis in glioma cells was associated with the downregulation of CD147 and the upregulation of oxidative stress. CD147 may be an optional target of shikonin‑induced cell apoptosis in glioma cells.
Collapse
Affiliation(s)
- Na Guo
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Rui Miao
- Department of Neurology, Shaanxi Second Provincial People's Hospital, Xi'an, Shaanxi 710005, P.R. China
| | - Xingchun Gao
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Dong Huang
- Department of Neurology, Shaanxi Second Provincial People's Hospital, Xi'an, Shaanxi 710005, P.R. China
| | - Zhifang Hu
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Naichun Ji
- Department of Sports, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Ying Nan
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Fengliang Jiang
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine, and Department of Immunology, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
18
|
CD147 as a novel biomarker for predicting the prognosis and clinicopathological features of bladder cancer: a meta-analysis. Oncotarget 2017; 8:62573-62588. [PMID: 28977970 PMCID: PMC5617530 DOI: 10.18632/oncotarget.19257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Objective To assess the prognostic and clinicopathological characteristics of CD147 in human bladder cancer. Methods Studies on CD147 expression in bladder cancer were retrieved from PubMed, EMBASE, the Cochrane Library, Web of Science, China National Knowledge Infrastructure, and the WanFang databases. Outcomes were pooled with meta-analyzing softwares RevMan 5.3 and STATA 14.0. Results Twenty-four studies with 25 datasets demonstrated that CD147 expression was higher in bladder cancer than in non-cancer tissues (OR=43.64, P<0.00001). Moreover, this increase was associated with more advanced clinical stages (OR=73.89, P<0.0001), deeper invasion (OR=3.22, P<0.00001), lower histological differentiation (OR=4.54, P=0.0005), poorer overall survival (univariate analysis, HR=2.63, P<0.00001; multivariate analysis, HR=1.86, P=0.00036), disease specific survival (univariate analysis, HR=1.65, P=0.002), disease recurrence-free survival (univariate analysis, HR=2.78, P=0.001; multivariate analysis, HR=5.51, P=0.017), rate of recurrence (OR=1.91, P=0.0006), invasive depth (pT2∼T4 vs. pTa∼T1; OR=3.22, P<0.00001), and histological differentiation (low versus moderate-to-high; OR=4.54, P=0.0005). No difference was found among disease specific survival in multivariate analysis (P=0.067), lymph node metastasis (P=0.12), and sex (P=0.15). Conclusion CD147 could be a biomarker for early diagnosis, treatment, and prognosis of bladder cancer.
Collapse
|
19
|
The prognostic and clinicopathologic characteristics of CD147 and esophagus cancer: A meta-analysis. PLoS One 2017; 12:e0180271. [PMID: 28700599 PMCID: PMC5507401 DOI: 10.1371/journal.pone.0180271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/13/2017] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE The prognostic significance of CD147 expression in esophageal cancer patients remains controversial. Using a meta-analysis, we investigated the prognostic and clinicopathologic characteristics of CD147 in esophageal cancer. METHODS A comprehensive literature search of the PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wanfang databases (1988-2016) was performed to identify studies of all esophageal cancer subtypes. Correlations between CD147 expression and survival outcomes and clinicopathological features were analyzed using meta-analysis methods. RESULTS Seventeen studies were included. High CD147 expression reduced the 3-year survival rate (OR = 3.26, 95% CI = (1.53, 6.93), p = 0.02) and 5-year survival rate(OR = 4.35, 95% CI = (2.13, 8.90), p < 0.0001). High CD147 expression reduced overall survival in esophageal cancer (HR = 1.60, 95% CI = (1.19, 2.15), p = 0.02). Additionally, higher CD147 expression was detected in esophageal cancer tissues than noncancerous tissues (OR = 9.45, 95% CI = (5.39, 16.59), p < 0.00001), normal tissues (OR = 12.73, 95% CI = (3.49, 46.46), p = 0.0001), para-carcinoma tissues (OR = 12.80, 95% CI = (6.57, 24.92), p < 0.00001), and hyperplastic tissues (OR = 3.27, 95% CI = (1.47, 7.29), p = 0.004). CD147 expression was associated with TNM stage (OR = 3.66, 95% CI = (2.20, 6.09), p < 0.00001), tumor depth (OR = 7.97, 95% CI = (4.13, 15.38), p < 0.00001), and lymph node status (OR = 5.14, 95% CI = (2.03,13.01), p = 0.0005), but not with tumor differentiation, age, or sex. CONCLUSION Our meta-analysis suggests that CD147 is an efficient prognostic factor in esophageal cancer. High CD147 expression in patients with esophageal cancer was associated with worse survival outcomes and common clinicopathological indicators of poor prognosis.
Collapse
|