1
|
Saito N, Hirai N, Sato S, Hayashi M, Iwabuchi S. Delayed Pseudoprogression in Glioblastoma Patients Treated With Tumor-Treating Fields. Cureus 2024; 16:e55147. [PMID: 38558596 PMCID: PMC10979818 DOI: 10.7759/cureus.55147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Tumor-treating fields (TTFields) is an established treatment modality for glioblastoma. False progression to chemoradiation is a known problem in patients with glioblastoma multiforme (GBM), with most cases occurring within three months of radiation therapy. In this report, we present two cases of delayed pseudoprogression caused by TTFields. Two patients with GBM who received TTFields showed signs of radiographic progression six months after the completion of radiation therapy. Patient 1 was a 37-year-old female with a glioblastoma in the right temporal lobe. Patient 2 was a 70-year-old male with glioblastoma in the left temporal lobe. Both patients received radiation therapy, followed by temozolomide (TMZ) maintenance therapy and TTFields. Patient 1 underwent a second resection; however, the pathology revealed only a treatment effect, and the final diagnosis was a pseudoprogression. In Case 2, the disease resolved with steroid therapy alone. In both patients, the lesions appeared later than during the typical pseudoprogression period. A recent study reported that TTFields increase the permeability of the plasma cell membrane, which may result in further leakage of gadolinium into the extracellular lumen. Further studies are needed to better characterize delayed pseudoprogression and improve treatment outcomes.
Collapse
Affiliation(s)
- Norihiko Saito
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Nozomi Hirai
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Sho Sato
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Morito Hayashi
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | | |
Collapse
|
2
|
Zeyen T, Paech D, Weller J, Schäfer N, Tzaridis T, Duffy C, Nitsch L, Schneider M, Potthoff AL, Steinbach JP, Hau P, Schlegel U, Seidel C, Krex D, Grauer O, Goldbrunner R, Zeiner PS, Tabatabai G, Galldiks N, Stummer W, Hattingen E, Glas M, Radbruch A, Herrlinger U, Schaub C. Undetected pseudoprogressions in the CeTeG/NOA-09 trial: hints from postprogression survival and MRI analyses. J Neurooncol 2023; 164:607-616. [PMID: 37728779 PMCID: PMC10589172 DOI: 10.1007/s11060-023-04444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE In the randomized CeTeG/NOA-09 trial, lomustine/temozolomide (CCNU/TMZ) was superior to TMZ therapy regarding overall survival (OS) in MGMT promotor-methylated glioblastoma. Progression-free survival (PFS) and pseudoprogression rates (about 10%) were similar in both arms. Further evaluating this discrepancy, we analyzed patterns of postprogression survival (PPS) and MRI features at first progression according to modified RANO criteria (mRANO). METHODS We classified the patients of the CeTeG/NOA-09 trial according to long vs. short PPS employing a cut-off of 18 months and compared baseline characteristics and survival times. In patients with available MRIs and confirmed progression, the increase in T1-enhancing, FLAIR hyperintense lesion volume and the change in ADC mean value of contrast-enhancing tumor upon progression were determined. RESULTS Patients with long PPS in the CCNU/TMZ arm had a particularly short PFS (5.6 months). PFS in this subgroup was shorter than in the long PPS subgroup of the TMZ arm (11.1 months, p = 0.01). At mRANO-defined progression, patients of the CCNU/TMZ long PPS subgroup had a significantly higher increase of mean ADC values (p = 0.015) and a tendency to a stronger volumetric increase in T1-enhancement (p = 0.22) as compared to long PPS patients of the TMZ arm. CONCLUSION The combination of survival and MRI analyses identified a subgroup of CCNU/TMZ-treated patients with features that sets them apart from other patients in the trial: short first PFS despite long PPS and significant increase in mean ADC values upon mRANO-defined progression. The observed pattern is compatible with the features commonly observed in pseudoprogression suggesting mRANO-undetected pseudoprogressions in the CCNU/TMZ arm of CeTeG/NOA-09.
Collapse
Affiliation(s)
- Thomas Zeyen
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Theophilos Tzaridis
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Cathrina Duffy
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Louisa Nitsch
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Peter Hau
- Department of Neurology and Wilhelm Sander NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Uwe Schlegel
- Department of Neurology, Klinik Hirslanden, Zürich, Switzerland
| | - Clemens Seidel
- Department of Radiation Oncology, University of Leipzig, Leipzig, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Technische Universität Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Oliver Grauer
- Department of Neurology, University of Münster, Münster, Germany
| | - Roland Goldbrunner
- Center of Neurosurgery Department of General, Neurosurgery University of Cologne, Cologne, Germany
| | - Pia Susan Zeiner
- Dr. Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, HertieTübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany and Research Center Juelich, Inst. of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University of Münster, Münster, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Hospital Frankfurt, 60590, Frankfurt Am Main, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Medicine Essen, Hufelandstr. 55, 45147, Essen, Germany
| | | | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Seyve A, Dehais C, Chinot O, Djelad A, Cohen-Moyal E, Bronnimann C, Gourmelon C, Emery E, Colin P, Boone M, Vauléon E, Langlois O, di Stefano AL, Seizeur R, Ghiringhelli F, D’Hombres A, Feuvret L, Guyotat J, Capelle L, Carpentier C, Garnier L, Honnorat J, Meyronet D, Mokhtari K, Figarella-Branger D, Ducray F. Incidence and characteristics of pseudoprogression in IDH-mutant high-grade gliomas: A POLA network study. Neuro Oncol 2023; 25:495-507. [PMID: 35953421 PMCID: PMC10013645 DOI: 10.1093/neuonc/noac194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Incidence and characteristics of pseudoprogression in isocitrate dehydrogenase-mutant high-grade gliomas (IDHmt HGG) remain to be specifically described. METHODS We analyzed pseudoprogression characteristics and explored the possibility of pseudoprogression misdiagnosis in IDHmt HGG patients, treated with radiotherapy (RT) (with or without chemotherapy [CT]), included in the French POLA network. Pseudoprogression was analyzed in patients with MRI available for review (reference cohort, n = 200). Pseudoprogression misdiagnosis was estimated in this cohort and in an independent cohort (control cohort, n = 543) based on progression-free survival before and after first progression. RESULTS In the reference cohort, 38 patients (19%) presented a pseudoprogression after a median time of 10.5 months after RT. Pseudoprogression characteristics were similar across IDHmt HGG subtypes. In most patients, it consisted of the appearance of one or several infracentimetric, asymptomatic, contrast-enhanced lesions occurring within 2 years after RT. The only factor associated with pseudoprogression occurrence was adjuvant PCV CT. Among patients considered as having a first true progression, 7 out of 41 (17%) in the reference cohort and 35 out of 203 (17%) in the control cohort were retrospectively suspected to have a misdiagnosed pseudoprogression. Patients with a misdiagnosed pseudoprogression were characterized by a time to event and an outcome similar to that of patients with a pseudoprogression but presented with larger and more symptomatic lesions. CONCLUSION In patients with an IDHmt HGG, pseudoprogression occurs later than in IDH-wildtype glioblastomas and seems not only frequent but also frequently misdiagnosed. Within the first 2 years after RT, the possibility of a pseudoprogression should be carefully considered.
Collapse
Affiliation(s)
- Antoine Seyve
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Caroline Dehais
- Department of Neurology 2-Mazarin, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Olivier Chinot
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Apolline Djelad
- Department of Neurosurgery, University Hospital of Lille, Lille, France
| | - Elisabeth Cohen-Moyal
- Department of Radiotherapy, Claudius Regaud Institut, Cancer University Institut of Toulouse, Oncopole 1, Paul Sabatier University, Toulouse III, Toulouse, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, University Hospital of Bordeaux, Bordeaux, France
| | - Carole Gourmelon
- Department of Medical Oncology, West Cancerology Institut René Gauducheau, Saint-Herblain, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, Caen, France
| | - Philippe Colin
- Department of Radiotherapy, Courlancy Institut of Cancer, Rouen, France
| | - Mathieu Boone
- Medical Oncology Department, Amiens University Hospital, Amiens, France
| | | | - Olivier Langlois
- Department of Neurosurgery, University Hospital of Rouen, Rouen, France
| | | | - Romuald Seizeur
- Neurosurgery Department, Hôpital de la cavale blanche, CHU Brest, Brest, France
| | | | - Anne D’Hombres
- Department of Radiotherapy, South Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Loic Feuvret
- Department of Radiotherapy, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Jacques Guyotat
- Department of Neurosurgery, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Laurent Capelle
- Department of Neurosurgery, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Catherine Carpentier
- Department of Neurology 2-Mazarin, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospital Pitié Salpêtrière-Charles Foix, Sorbonne University, Paris, France
| | - Louis Garnier
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institute NeuroMyoGène, MeLis INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - David Meyronet
- Pathology Department, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- Centre de recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Transcriptome Diversity in Stem Cells Laboratory, Lyon, France
| | - Karima Mokhtari
- Pathology Department, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Dominique Figarella-Branger
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Aix-Marseille University, Marseille, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- Centre de recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Transcriptome Diversity in Stem Cells Laboratory, Lyon, France
| |
Collapse
|
4
|
Li Y, Qin Q, Zhang Y, Cao Y. Noninvasive Determination of the IDH Status of Gliomas Using MRI and MRI-Based Radiomics: Impact on Diagnosis and Prognosis. Curr Oncol 2022; 29:6893-6907. [PMID: 36290819 PMCID: PMC9600456 DOI: 10.3390/curroncol29100542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Gliomas are the most common primary malignant brain tumors in adults. The fifth edition of the WHO Classification of Tumors of the Central Nervous System, published in 2021, provided molecular and practical approaches to CNS tumor taxonomy. Currently, molecular features are essential for differentiating the histological subtypes of gliomas, and recent studies have emphasized the importance of isocitrate dehydrogenase (IDH) mutations in stratifying biologically distinct subgroups of gliomas. IDH plays a significant role in gliomagenesis, and the association of IDH status with prognosis is very clear. Recently, there has been much progress in conventional MR imaging (cMRI), advanced MR imaging (aMRI), and radiomics, which are widely used in the study of gliomas. These advances have resulted in an improved correlation between MR signs and IDH mutation status, which will complement the prediction of the IDH phenotype. Although imaging cannot currently substitute for genetic tests, imaging findings have shown promising signs of diagnosing glioma subtypes and evaluating the efficacy and prognosis of individualized molecular targeted therapy. This review focuses on the correlation between MRI and MRI-based radiomics and IDH gene-phenotype prediction, discussing the value and application of these techniques in the diagnosis and evaluation of the prognosis of gliomas.
Collapse
Affiliation(s)
- Yurong Li
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qin Qin
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Yumeng Zhang
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Yuandong Cao
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
- Correspondence:
| |
Collapse
|
5
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Yuan T, Ji X, Liu Y, Gao G, Ren JL, Huang D, Quan G. New Enhancement beyond Radiation Field Improves Survival Prediction in Patients with Post-Treatment High-Grade Glioma. JOURNAL OF ONCOLOGY 2021; 2021:9437090. [PMID: 34035813 PMCID: PMC8118721 DOI: 10.1155/2021/9437090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
The imaging signs which can accurately predict survival prognosis after standard treatment of high-grade glioma (HGG) are highly desirable. This study aims to explore the role of new enhancement beyond radiation field (NERF) in the survival prediction in patients with post-treatment HGG. The present study included 142 pathologically confirmed HGG patients who had received standard treatment. NERF, as well as other conventional MR findings and clinical variables, were included in univariate and multivariate analyses for evaluating their impactions on progression-free survival (PFS) and overall survival (OS). Univariate analysis showed that histological grade (p=0.008) and NERF (p=0.001) were the prognostic variables for poor PFS, whereas histological grade (p=0.017), NERF (p=0.001), and new subventricular zone enhancement (nSVZE) (p=0.001) were prognostic variables for poor OS. The multivariate analysis showed that NERF (HR 3.93; 95% CI 1.93-8.01; p=0.001) and nSVZE (HR 3.92; 95% CI 1.95-7.89; p=0.001) were the prognostic variables for poor OS. However, only nSVZE was (HR 3.29; 95% CI 2.04-5.28; p=0.001) the prognostic variable for poor PFS. When combining the NERF with the clinical and other MR variables, the highest AUC (0.924) and specificity (0.899) for predicting poor OS were achieved. The location of new developed enhancements relevant to high dose radiation field appears to be the main determinant of their prognostic value. Our results suggest that the new enhancement beyond radiation field can improve the survival prediction in patients with HGG after standard treatment.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Ji
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yawu Liu
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Guodong Gao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Deyou Huang
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guanmin Quan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Dynamic Susceptibility Perfusion Imaging for Differentiating Progressive Disease from Pseudoprogression in Diffuse Glioma Molecular Subtypes. J Clin Med 2021; 10:jcm10040598. [PMID: 33562558 PMCID: PMC7915936 DOI: 10.3390/jcm10040598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Rationale and Objectives: Advanced adjuvant therapy of diffuse gliomas can result in equivocal findings in follow-up imaging. We aimed to assess the additional value of dynamic susceptibility perfusion imaging in the differentiation of progressive disease (PD) from pseudoprogression (PsP) in different molecular glioma subtypes. Materials and Methods: 89 patients with treated diffuse glioma with different molecular subtypes (IDH wild type (Astro-IDHwt), IDH mutant astrocytomas (Astro-IDHmut) and oligodendrogliomas), and tumor-suspect lesions on post-treatment follow-up imaging were classified into two outcome groups (PD or PsP) retrospectively by histopathology or clinical follow-up. The relative cerebral blood volume (rCBV) was assessed in the tumor-suspect FLAIR and contrast-enhancing (CE) lesions. We analyzed how a multilevel classification using a molecular subtype, the presence of a CE lesion, and two rCBV histogram parameters performed for PD prediction compared with a decision tree model (DTM) using additional rCBV parameters. Results: The PD rate was 69% in the whole cohort, 86% in Astro-IDHwt, 52% in Astro-IDHmut, and 55% in oligodendrogliomas. In the presence of a CE lesion, the PD rate was higher with 82%, 94%, 59%, and 88%, respectively; if there was no CE lesion, however, the PD rate was only 44%, 60%, 40%, and 33%, respectively. The additional use of the rCBV parameters in the DTM yielded a prediction accuracy for PD of 99%, 100%, 93%, and 95%, respectively. Conclusion: Utilizing combined information about the molecular tumor type, the presence or absence of CE lesions and rCBV parameters increases PD prediction accuracy in diffuse glioma.
Collapse
|
8
|
Reuter G, Moïse M, Roll W, Martin D, Lombard A, Scholtes F, Stummer W, Suero Molina E. Conventional and advanced imaging throughout the cycle of care of gliomas. Neurosurg Rev 2021; 44:2493-2509. [PMID: 33411093 DOI: 10.1007/s10143-020-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Although imaging of gliomas has evolved tremendously over the last decades, published techniques and protocols are not always implemented into clinical practice. Furthermore, most of the published literature focuses on specific timepoints in glioma management. This article reviews the current literature on conventional and advanced imaging techniques and chronologically outlines their practical relevance for the clinical management of gliomas throughout the cycle of care. Relevant articles were located through the Pubmed/Medline database and included in this review. Interpretation of conventional and advanced imaging techniques is crucial along the entire process of glioma care, from diagnosis to follow-up. In addition to the described currently existing techniques, we expect deep learning or machine learning approaches to assist each step of glioma management through tumor segmentation, radiogenomics, prognostication, and characterization of pseudoprogression. Thorough knowledge of the specific performance, possibilities, and limitations of each imaging modality is key for their adequate use in glioma management.
Collapse
Affiliation(s)
- Gilles Reuter
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium. .,GIGA-CRC In-vivo Imaging Center, ULiege, Liège, Belgium.
| | - Martin Moïse
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Didier Martin
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Arnaud Lombard
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Félix Scholtes
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Department of Neuroanatomy, University of Liège, Liège, Belgium
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
9
|
Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 2020; 157:103188. [PMID: 33307200 DOI: 10.1016/j.critrevonc.2020.103188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
With new therapeutic protocols, more patients treated for glioblastoma have experienced a suspicious radiologic image of progression (pseudoprogression) during follow-up. Pseudoprogression should be differentiated from true progression because the disease management is completely different. In the case of pseudoprogression, the follow-up continues, and the patient is considered stable. In the case of true progression, a treatment adjustment is necessary. Presently, a pseudoprogression diagnosis certainly needs to be pathologically confirmed. Some important efforts in the radiological, histopathological, and genomic fields have been made to differentiate pseudoprogression from true progression, and the assessment of response criteria exists but remains limited. The aim of this paper is to highlight clinical and pathological markers to differentiate pseudoprogression from true progression through a literature review.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Département of Pathology, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Guido Ahle
- Departement of Neurology, Hôpitaux Civils de Colmar, 39 Avenue de la Liberté, 68024, Colmar, France
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Audrey Keller
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Pïcardie University Hospital, 1 rond point du Professeur Christian Cabrol, 80054 Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|