1
|
Habibi MA, Mirjnani MS, Ghazizadeh Y, Norouzi A, Minaee P, Eazi S, Atarod MH, Aliasgary A, Noroozi MZ, Hajikarimloo B, Sheehan JP. Frameless stereotactic radiosurgery for brain metastasis: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:423. [PMID: 39136823 DOI: 10.1007/s10143-024-02666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 01/04/2025]
Abstract
Stereotactic Radiosurgery (SRS) delivers a high dose of radiation to a specific brain area while limiting radiation to nearby healthy tissue. While most SRS has traditionally been performed with a stereotactic frame-based approach, this study aims to investigate the safety and efficacy of frameless radiosurgery in patients with brain metastases. Our study followed the recommended guidelines summarized in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. The electronic databases of PubMed/Medline, Scopus, Embase, and Web of Science (WOS) were searched from inception to 10 October 2023. The pooled rate of outcomes was calculated using random effect model and Restricted maximum-likelihood (REML) method. All statistical analysis was performed by STATA V.17. A total of 499 studies were recruited from the electronic databases. After removing duplicates (n = 117), 382 studies were used for title/abstract, and 329 were removed from the study selection process. A total of 53 articles were used for full-text assessment, and 35 studies were included for data extraction. Our analysis revealed a significant increase across all pooled survival rates and local control rates by initiating the radiosurgery for patients, estimating the pooled 6-month OSR of 75% (95% CI: 68-81%), 1-year overall survival rate (OSR) of 60% (95% CI: 51-69%), 18-month OSR of 48% (95% CI: 10-85%), 2-year OSR of 39% (95% CI: 19-58%), 1-year progression-free survival rate (PFSR) of 68% (95% CI: 39-98%), 2-year PFSR of 75% (95% CI: 58-91%), 6-month local control rate (LCR) of 93% (95% CI: 90-96%), and 12-month LCR of 86% (95% CI: 82-90%). Our meta-analysis findings confirm the efficacy of frameless radiosurgery in treating brain metastases. Using data from several trials, we were able to demonstrate stereotactic radiosurgery's effectiveness as a therapy option for brain metastasis patients, demonstrating local control and reasonable overall survival.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Norouzi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Poriya Minaee
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | - Aliakbar Aliasgary
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Zaman Noroozi
- Student Research Committee of Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Bardia Hajikarimloo
- Department of Neurosurgery, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, USA.
| |
Collapse
|
2
|
Lim W, Acker G, Hardt J, Kufeld M, Kluge A, Brenner W, Conti A, Budach V, Vajkoczy P, Senger C, Prasad V. Dynamic 18F-FET PET/CT to differentiate recurrent primary brain tumor and brain metastases from radiation necrosis after single-session robotic radiosurgery. Cancer Treat Res Commun 2022; 32:100583. [PMID: 35688103 DOI: 10.1016/j.ctarc.2022.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Cyberknife robotic radiosurgery (RRS) provides single-session high-dose radiotherapy of brain tumors with a steep dose gradient and precise real-time image-guided motion correction. Although RRS appears to cause more radiation necrosis (RN), the radiometabolic changes after RRS have not been fully clarified. 18F-FET-PET/CT is used to differentiate recurrent tumor (RT) from RN after radiosurgery when MRI findings are indecisive. We explored the usefulness of dynamic parameters derived from 18F-FET PET in differentiating RT from RN after Cyberknife treatment in a single-center study population. METHODS We retrospectively identified brain tumor patients with static and dynamic 18F-FET-PET/CT for suspected RN after Cyberknife. Static (tumor-to-background ratio) and dynamic PET parameters (time-activity curve, time-to-peak) were quantified. Analyses were performed for all lesions taken together (TOTAL) and for brain metastases only (METS). Diagnostic accuracy of PET parameters (using mean tumor-to-background ratio >1.95 and time-to-peak of 20 min for RT as cut-offs) and their respective improvement of diagnostic probability were analyzed. RESULTS Fourteen patients with 28 brain tumors were included in quantitative analysis. Time-activity curves alone provided the highest sensitivities (TOTAL: 95%, METS: 100%) at the cost of specificity (TOTAL: 50%, METS: 57%). Combined mean tumor-to-background ratio and time-activity curve had the highest specificities (TOTAL: 63%, METS: 71%) and led to the highest increase in diagnosis probability of up to 16% p. - versus 5% p. when only static parameters were used. CONCLUSIONS This preliminary study shows that combined dynamic and static 18F-FET PET/CT parameters can be used in differentiating RT from RN after RRS.
Collapse
Affiliation(s)
- Winna Lim
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Juliane Hardt
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Center for Research and Training for Health in the Human-Animal-Environment Interface, University of Veterinary Medicine (Foundation) Hannover (TiHo), Buenteweg 2, Hanover 30559, Germany; Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Information Management, Faculty of Information and Communication, University of Applied Sciences Hannover, Germany
| | - Markus Kufeld
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; European Radiosurgery Center Munich, Max Lebsche-Platz 31, Munich 81377, Germany; Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anne Kluge
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Alfredo Conti
- Department of Biomedical Science and Neuromotor Sciences DIBINEM, Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Via Altura 3, 40139 29 Bologna (BO), Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna (BO) 40139, Italy
| | - Volker Budach
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany; Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Carolin Senger
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany; Department of Nuclear Medicine, University Hospital of Ulm, Ulm 89070, Germany.
| |
Collapse
|
3
|
Acker G, Hashemi SM, Fuellhase J, Kluge A, Conti A, Kufeld M, Kreimeier A, Loebel F, Kord M, Sladek D, Stromberger C, Budach V, Vajkoczy P, Senger C. Efficacy and safety of CyberKnife radiosurgery in elderly patients with brain metastases: a retrospective clinical evaluation. Radiat Oncol 2020; 15:225. [PMID: 32993672 PMCID: PMC7523070 DOI: 10.1186/s13014-020-01655-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) has been increasingly applied for up to 10 brain metastases instead of whole brain radiation therapy (WBRT) to achieve local tumor control while reducing neurotoxicity. Furthermore, brain-metastasis incidence is rising due to the increasing survival of patients with cancer. Our aim was to analyze the efficacy and safety of CyberKnife (CK) radiosurgery for elderly patients. Methods We retrospectively identified all patients with brain metastases ≥ 65 years old treated with CK-SRS at our institution since 2011 and analyzed data of primary diseases, multimodality treatments, and local therapy effect based on imaging follow-up and treatment safety. Kaplan–Meier analysis for local progression-free interval and overall survival were performed. Results We identified 97 patients (233 lesions) fulfilling the criteria at the first CK-SRS. The mean age was 73.2 ± 5.8 (range: 65.0–87.0) years. Overall, 13.4% of the patients were > 80 years old. The three most frequent primary cancers were lung (40.2%), kidney (22.7%), and malignant melanoma (15.5%). In 38.5% (47/122 treatments) multiple brain metastases were treated with the CK-SRS, with up to eight lesions in one session. The median planning target volume (PTV) was 1.05 (range: 0.01–19.80) cm3. A single fraction was applied in 92.3% of the lesions with a median prescription dose of 19 (range: 12–21) Gy. The estimated overall survivals at 3-, 6-, and 12 months after SRS were 79, 55, and 23%, respectively. The estimated local tumor progression-free intervals at 6-, 12-, 24-, 36-, and 72 months after SRS were 99.2, 89.0, 67.2, 64.6, and 64.6%, respectively. Older age and female sex were predictive factors of local progression. The Karnofsky performance score remained stable in 97.9% of the patients; only one patient developed a neurological deficit after SRS of a cerebellar lesion (ataxia, CTCAE Grade 2). Conclusions SRS is a safe and efficient option for the treatment of elderly patients with brain metastases with good local control rates without the side effects of WBRT. Older age and female sex seem to be predictive factors of local progression. Prospective studies are warranted to clarify the role of SRS treatment for elderly patients.
Collapse
Affiliation(s)
- Gueliz Acker
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany. .,Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Seyed-Morteza Hashemi
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Josch Fuellhase
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne Kluge
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alfredo Conti
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Neurosurgery, Biomedical and Neuromotor sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Markus Kufeld
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anita Kreimeier
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Franziska Loebel
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Melina Kord
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Diana Sladek
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carmen Stromberger
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Volker Budach
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carolin Senger
- Charité CyberKnife Center, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Radiation Oncology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|