1
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
2
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
4
|
Role of Endocytosis Proteins in Gefitinib-Mediated EGFR Internalisation in Glioma Cells. Cells 2021; 10:cells10113258. [PMID: 34831480 PMCID: PMC8618144 DOI: 10.3390/cells10113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
EGFR (epidermal growth factor receptor), a member of the ErbB tyrosine kinase receptor family, is a clinical therapeutic target in numerous solid tumours. EGFR overexpression in glioblastoma (GBM) drives cell invasion and tumour progression. However, clinical trials were disappointing, and a molecular basis to explain these poor results is still missing. EGFR endocytosis and membrane trafficking, which tightly regulate EGFR oncosignaling, are often dysregulated in glioma. In a previous work, we showed that EGFR tyrosine kinase inhibitors, such as gefitinib, lead to enhanced EGFR endocytosis into fused early endosomes. Here, using pharmacological inhibitors, siRNA-mediated silencing, or expression of mutant proteins, we showed that dynamin 2 (DNM2), the small GTPase Rab5 and the endocytosis receptor LDL receptor-related protein 1 (LRP-1), contribute significantly to gefitinib-mediated EGFR endocytosis in glioma cells. Importantly, we showed that inhibition of DNM2 or LRP-1 also decreased glioma cell responsiveness to gefitinib during cell evasion from tumour spheroids. By highlighting the contribution of endocytosis proteins in the activity of gefitinib on glioma cells, this study suggests that endocytosis and membrane trafficking might be an attractive therapeutic target to improve GBM treatment.
Collapse
|
5
|
Fabian C, Han M, Bjerkvig R, Niclou SP. Novel facets of glioma invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:33-64. [PMID: 33962750 DOI: 10.1016/bs.ircmb.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malignant gliomas including Glioblastoma (GBM) are characterized by extensive diffuse tumor cell infiltration throughout the brain, which represents a major challenge in clinical disease management. While surgical resection is beneficial for patient outcome, it is well recognized that tumor cells at the invasive front or beyond stay behind and constitute a major source of tumor recurrence. Invasive glioma cells also represent a difficult therapeutic target since they are localized within normal functional brain areas with an intact blood brain barrier (BBB), thereby excluding most systemic drug treatments. Cell movement is mediated via the actin cytoskeleton where corresponding membrane protrusions play essential roles. This review provides an overview of the various paths of glioma cell invasion and underlines the specific aspects of the brain microenvironment. We highlight recent insight into tumor microtubes, neuro-glioma synapses and tumor metabolism which can regulate collective invasion processes. We also focus on the deregulation of actin cytoskeleton-related components in the context of glioma invasion, a deregulation that may be controlled by genomic alterations in tumor cells as well as by various external factors, including extracellular matrix (ECM) components and non-malignant stromal cells. Finally we critically assess the challenges and opportunities for therapeutically targeting glioma cell invasion.
Collapse
Affiliation(s)
- Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Mingzhi Han
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University; Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Miller ML, Tome-Garcia J, Waluszko A, Sidorenko T, Kumar C, Ye F, Tsankova NM. Practical Bioinformatic DNA-Sequencing Pipeline for Detecting Oncogene Amplification and EGFRvIII Mutational Status in Clinical Glioblastoma Samples. J Mol Diagn 2019; 21:514-524. [PMID: 31000415 DOI: 10.1016/j.jmoldx.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with dismal prognosis. Oncogenic mutations in glioblastoma frequently affect receptor tyrosine kinase pathway components that are challenging to quantify because of heterogeneous expression. EGFRvIII, a common oncogenic receptor tyrosine kinase mutant protein in glioblastoma, potentiates tumor malignancy and is an emerging tumor-specific immunotarget, underlining the need for its more accessible and quantitative detection. We used normalized next-generation sequencing data from 117 brain and 371 reference clinical tumor samples to detect focal gene amplifications across the commercial Ion AmpliSeq Cancer Hotspot Panel version 2 and infer EGFRvIII status based on relative coverage dropout of the gene's truncated region within EGFR. In glioblastomas (n = 45), amplification of EGFR [18 (40%)], PDGFRA [3 (7%)], KIT [2 (4%)], MET [1 (2%)], and AKT1 [1 (2%)] was detected. With respect to EGFR and PDGFRA amplification, there was near-complete agreement between next-generation sequencing and in situ hybridization. Consistent with previous reports, this method detected EGFRvIII exclusively in EGFR-amplified glioblastomas [8 (44%)], which was confirmed using long-range PCR. Our study offers a practical method for detecting oncogene amplifications and large intragenic mutations in a clinically implemented hotspot panel that can be quantified using z scores. The validated detection of EGFRvIII using DNA sequencing eliminates problems with transcript degradation, and the provided script facilitates efficient incorporation into a laboratory's bioinformatic pipeline.
Collapse
Affiliation(s)
- Michael L Miller
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Tome-Garcia
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aneta Waluszko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatyana Sidorenko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chitra Kumar
- Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York
| | - Fei Ye
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Westchester Medical Center, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York.
| | - Nadejda M Tsankova
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
7
|
Development and validation of a (RP)UHPLC-UV-(HESI/Orbitrap)MS method for the identification and quantification of mixtures of intact therapeutical monoclonal antibodies using a monolithic column. J Pharm Biomed Anal 2018; 159:437-448. [DOI: 10.1016/j.jpba.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
|