1
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
2
|
Wang Z, Wang T, Chen X, Cheng J, Wang L. Pterostilbene regulates cell proliferation and apoptosis in non-small-cell lung cancer via targeting COX-2. Biotechnol Appl Biochem 2023; 70:106-119. [PMID: 35231150 DOI: 10.1002/bab.2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC), occupying a great proportion of lung cancer, threatens the health of patients, and the cyclooxygenase-2 (COX-2) expression is found to be upregulated in lung cancer. Pterostilbene (PTE) is perceived as a novel method for clinical therapy due to its high performance. However, the mechanism underlying and the interaction between PTE and COX-2 remain vague. We simulated radiation circumstances and transfected cells with the interference of PTE and COX-2. Our results showed that radiation or PTE treatment alone restrained cell proliferation and viability while stimulating cell apoptosis, and the above properties were strengthened when the two were in combination. The COX-2 expression was promoted by radiation but was reduced by PTE. PTE reversed the effects of radiation on the COX-2 expression. COX-2 knockdown suppressed COX-2 expression and proliferation and enhanced apoptosis of cells suffering radiation, while COX-2 overexpression reversed the inhibition of PTE. Our study suggested PTE regulated NSCLC cell proliferation and apoptosis via targeting COX-2, which might shed a light on cancer therapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Tingting Wang
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Xu Chen
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Jing Cheng
- Department of Integrated Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| | - Lijuan Wang
- Respiratory and Critical Care Medicine Department, Taizhou Central Hospital (Taizhou University Hospital), Jiaojiang District, Taizhou City, China
| |
Collapse
|
3
|
Gupta DS, Gadi V, Kaur G, Chintamaneni M, Tuli HS, Ramniwas S, Sethi G. Resveratrol and Its Role in the Management of B-Cell Malignancies-A Recent Update. Biomedicines 2023; 11:221. [PMID: 36672729 PMCID: PMC9855921 DOI: 10.3390/biomedicines11010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
The growing incidence of B cell malignancies globally has prompted research on the pharmacological properties of phytoconstituents in cancer management. Resveratrol, a polyphenolic stilbenoid widely found in nature, has been explored for its anti-inflammatory and antioxidant properties, and promising results from different pre-clinical studies have indicated its potential for management of B cell malignancies. However, these claims must be substantiated by a greater number of clinical trials in diverse populations, in order to establish its safety and efficacy profile. In addition to this, there is a need to explore nanodelivery of this agent, owing to its poor solubility, which in turn may impact its bioavailability. This review aims to offer an overview of the occurrence and pathogenesis of B cell malignancies with a special focus on the inflammatory pathways involved, the mechanism of actions of resveratrol and its pharmacokinetic profile, results from pre-clinical and clinical studies, as well as an overview of the marketed formulations. The authors have also presented their opinion on the various challenges associated with the clinical development of resveratrol and future perspectives regarding therapeutic applications of this agent.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vile Parle-West, Mumbai 400056, India
| | - Vaishnavi Gadi
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vile Parle-West, Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vile Parle-West, Mumbai 400056, India
| | - Meena Chintamaneni
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vile Parle-West, Mumbai 400056, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
4
|
Komorowska D, Radzik T, Kalenik S, Rodacka A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int J Mol Sci 2022; 23:ijms231810627. [PMID: 36142554 PMCID: PMC9501384 DOI: 10.3390/ijms231810627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional cancer treatment is mainly based on the surgical removal of the tumor followed by radiotherapy and/or chemotherapy. When surgical removal is not possible, radiotherapy and, less often, chemotherapy is the only way to treat patients. However, despite significant progress in understanding the molecular mechanisms of carcinogenesis and developments in modern radiotherapy techniques, radiotherapy (alone or in combination) does not always guarantee treatment success. One of the main causes is the radioresistance of cancer cells. Increasing the radiosensitivity of cancer cells improves the processes leading to their elimination during radiotherapy and prolonging the survival of cancer patients. In order to enhance the effect of radiotherapy in the treatment of radioresistant neoplasms, radiosensitizers are used. In clinical practice, synthetic radiosensitizers are commonly applied, but scientists have recently focused on using natural products (phytocompounds) as adjuvants in radiotherapy. In this review article, we only discuss naturally occurring radiosensitizers currently in clinical trials (paclitaxel, curcumin, genistein, and papaverine) and those whose radiation sensitizing effects, such as resveratrol, have been repeatedly confirmed by many independent studies.
Collapse
Affiliation(s)
- Dominika Komorowska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Tomasz Radzik
- MARINEX International, 4 Placowa St., 93-446 Lodz, Poland
| | - Sebastian Kalenik
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Correspondence: ; Fax: +48-426354473
| |
Collapse
|
5
|
Voellger B, Zhang Z, Benzel J, Wang J, Lei T, Nimsky C, Bartsch JW. Targeting Aggressive Pituitary Adenomas at the Molecular Level-A Review. J Clin Med 2021; 11:jcm11010124. [PMID: 35011868 PMCID: PMC8745122 DOI: 10.3390/jcm11010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pituitary adenomas (PAs) are mostly benign endocrine tumors that can be treated by resection or medication. However, up to 10% of PAs show an aggressive behavior with invasion of adjacent tissue, rapid proliferation, or recurrence. Here, we provide an overview of target structures in aggressive PAs and summarize current clinical trials including, but not limited to, PAs. Mainly, drug targets in PAs are based on general features of tumor cells such as immune checkpoints, so that programmed cell death 1 (ligand 1) (PD-1/PD-L1) targeting may bear potential to cure aggressive PAs. In addition, epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and their downstream pathways are triggered in PAs, thereby modulating tumor cell proliferation, migration and/or tumor angiogenesis. Temozolomide (TMZ) can be an effective treatment of aggressive PAs. Combination of TMZ with 5-Fluorouracil (5-FU) or with radiotherapy could strengthen the therapeutic effects as compared to TMZ alone. Dopamine agonists (DAs) are the first line treatment for prolactinomas. Dopamine receptors are also expressed in other subtypes of PAs which renders DAs potentially suitable to treat other subtypes of PAs. Furthermore, targeting the invasive behavior of PAs could improve therapy. In this regard, human matrix metalloproteinase (MMP) family members and estrogens receptors (ERs) are highly expressed in aggressive PAs, and numerous studies demonstrated the role of these proteins to modulate invasiveness of PAs. This leaves a number of treatment options for aggressive PAs as reviewed here.
Collapse
Affiliation(s)
- Benjamin Voellger
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Correspondence: ; Tel.: +49-6421-58-66447
| | - Zhuo Zhang
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Julia Benzel
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Junwen Wang
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Christopher Nimsky
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
| | - Jörg-Walter Bartsch
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany; (Z.Z.); (J.B.); (J.W.); (C.N.); (J.-W.B.)
| |
Collapse
|
6
|
Lele W, Lei L, Liting Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp Ther Med 2021; 21:587. [PMID: 33850559 PMCID: PMC8027717 DOI: 10.3892/etm.2021.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
Resveratrol is a natural polyphenol with multiple positive biofunctions and was found to have potential as a radiosensitizer with an intricate molecular mechanism. Store-operated calcium entry (SOCE) is a novel intracellular calcium regulatory pattern that is mainly mediated by iron channels, such as by the stromal interaction molecule (STIM) and calcium release-activated calcium channel protein (Orai) families. SOCE was recently reported to be suppressed via the downregulation of STIM or Orai families for the promotion of tumor cell death induced by resveratrol. In the present study, resveratrol combined with irradiation treatment were found to induce more evident cell damage compared with irradiation treatment alone, as shown with Cell Counting Kit-8 assay and mitochondrial membrane potential detection with rhodamine 123. Additionally, resveratrol combined with irradiation treatment decreased the expression of STIM1 and Orai1, while it had no effects on STIM2, Orai2 and Orai3. Moreover, resveratrol combined with irradiation treatment lead to alleviated thapsigargin-induced SOCE. In addition, overexpression of STIM1 and Orai1 reversed resveratrol-induced SOCE inhibition and reduced death in A549 cells under irradiation. In summary, the present results revealed that resveratrol can significantly enhance the effect of irradiation damage on lung adenocarcinoma A549 cells, and this effect may be mediated by suppression of SOCE with reduced expression of both STIM1 and Orai1.
Collapse
Affiliation(s)
- Wu Lele
- Department of General Medicine, First People's Hospital of Yuhang, Hangzhou, Zhejiang 311100, P.R. China.,Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Lv Lei
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| | - Qian Liting
- Department of Radiotherapy, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China.,Epigenetic Laboratory, Anhui Provincial Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
7
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
8
|
Zhang Z, Bartsch JW, Benzel J, Lei T, Nimsky C, Voellger B. Selective estrogen receptor modulators decrease invasiveness in pituitary adenoma cell lines AtT-20 and TtT/GF by affecting expression of MMP-14 and ADAM12. FEBS Open Bio 2020; 10:2489-2498. [PMID: 33030286 PMCID: PMC7609764 DOI: 10.1002/2211-5463.12999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) significantly affect survival and invasiveness of rodent pituitary adenoma (PA) cells. The impact of three clinically relevant SERMs (bazedoxifene, clomiphene, raloxifene) on invasiveness and on gene and protein expression of invasion-related proteases [matrix metalloproteinase-14 (MMP-14) and A disintegrin and metalloproteinase-12 (ADAM12)] was analyzed in murine PA cells (AtT-20 and TtT/GF). All SERMs significantly decreased cell invasiveness. Moreover, SERMs significantly decreased expression of ADAM12 mRNA in both cell lines and of MMP-14 mRNA in TtT/GF cells. Invasion rates of AtT-20 and TtT/GF significantly decreased after ADAM12 gene silencing, and the invasion rate of TtT/GF cells significantly decreased after MMP-14 gene silencing. All SERMs affected ADAM12 protein expression in AtT-20 cells whereas bazedoxifene and raloxifene decreased MMP-14 protein expression in TtT/GF cells. We conclude that SERMs attenuate invasiveness of murine PA cells by downregulating expression levels of invasion-related proteases MMP-14 and ADAM12.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Neurosurgery, University Hospital Marburg, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jörg W Bartsch
- Department of Neurosurgery, University Hospital Marburg, Germany
| | - Julia Benzel
- Department of Neurosurgery, University Hospital Marburg, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
9
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|