1
|
Li P, Luo J, Zheng Z, Meng L, Zhang A, Cao W, Gong X. Survival Predictive Nomograms for Non-Surgical Brain Metastases Patients From Non-Small Cell Lung Cancer Receiving Radiotherapy: A Population-Based Study. Cancer Control 2024; 31:10732748241255212. [PMID: 38769789 PMCID: PMC11110521 DOI: 10.1177/10732748241255212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE A high number of Non-Small Cell Lung Cancer (NSCLC) patients with brain metastasis who have not had surgery often have a negative outlook. Radiotherapy remains a most common and effective method. Nomograms were developed to forecast the cancer-specific survival (CSS) and overall survival (OS) in NSCLC individuals with nonoperative brain metastases who underwent radiotherapy. METHODS Information was gathered from the Surveillance, Epidemiology, and End Results (SEER) database about patients diagnosed with NSCLC who had brain metastases not suitable for surgery. Nomograms were created and tested using multivariate Cox regression models to forecast CSS and OS at intervals of 1, 2, and 3 years. RESULTS The research involved 3413 individuals diagnosed with NSCLC brain metastases who had undergone radiotherapy but had not experienced surgery. These participants were randomly divided into two categories. The analysis revealed that gender, age, ethnicity, marital status, tumor location, tumor laterality, tumor grade, histology, T stage, N stage, chemotherapy, tumor size, lung metastasis, bone metastasis, and liver metastasis were significant independent predictors for OS and CSS. The C-index for the training set for predicting OS was .709 (95% CI, .697-.721), and for the validation set, it was .705 (95% CI, .686-.723), respectively. The C-index for predicting CSS was .710 (95% CI, .697-.722) in the training set and .703 (95% CI, .684-.722) in the validation set, respectively. The nomograms model, as suggested by the impressive C-index, exhibits outstanding differentiation ability. Moreover, the ROC and calibration curves reveal its commendable precision and distinguishing potential. CONCLUSIONS For the first time, highly accurate and reliable nomograms were developed to predict OS and CSS in NSCLC patients with non-surgical brain metastases, who have undergone radiotherapy treatment. The nomograms may assist in tailoring counseling strategies and choosing the most effective treatment method.
Collapse
Affiliation(s)
- Peng Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Luo
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zilong Zheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Cao
- Department of Breast, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Rozati H, Chen J, Williams M. Overall survival following stereotactic radiosurgery for ten or more brain metastases: a systematic review and meta-analysis. BMC Cancer 2023; 23:1004. [PMID: 37858075 PMCID: PMC10585836 DOI: 10.1186/s12885-023-11452-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Brain metastases are the most common intracranial tumours. Variation exists in the use of stereotactic radiosurgery for patients with 10 or more brain metastases. Concerns include an increasing number of brain metastases being associated with poor survival, the lack of prospective, randomised data and an increased risk of toxicity. METHODS We performed a systematic review and meta-analysis to assess overall survival of patients with ten or more brain metastases treated with stereotactic radiosurgery as primary therapy. The search strings were applied to MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL). Log hazard ratios and standard errors were estimated from each included study. A random-effects meta-analysis using the DerSimonian and Laird method was applied using the derived log hazard ratios and standard errors on studies which included a control group. RESULTS 15 studies were included for systematic review. 12 studies were used for pooled analysis for overall survival at set time points, with a predicted 12 month survival of 20-40%. The random-effects meta-analysis in five studies of overall survival comparing ten or greater metastases against control showed statistically worse overall survival in the 10 + metastases group (1.10, 95% confidence interval 1.03-1.18, p-value = < 0.01, I2 = 6%). A funnel plot showed no evidence of bias. There was insufficient information for a meta-analysis of toxicity. DISCUSSION Overall survival outcomes of patients with ten or more brain metastases treated with SRS is acceptable and should not be a deterrent for its use. There is a lack of prospective data and insufficient real-world data to draw conclusions on toxicity. PROSPERO ID CRD42021246115.
Collapse
Affiliation(s)
- Hamoun Rozati
- London Gamma Knife Centre, Platinum Medical Centre, Wellington Hospital, Lodge Road, London, UK
- Computational Oncology Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jiarong Chen
- Computational Oncology Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Matt Williams
- Computational Oncology Group, Department of Surgery and Cancer, Imperial College London, London, UK.
- Department of Radiotherapy, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
3
|
Huang Y, Liang E, Schaff EM, Zhao B, Snyder KC, Chetty IJ, Shah MM, Siddiqui SM. Impact of MRI resolution for Linac-based stereotactic radiosurgery. Front Oncol 2023; 13:1090582. [PMID: 36761944 PMCID: PMC9902927 DOI: 10.3389/fonc.2023.1090582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Objective Magnetic resonance imaging (MRI) is a standard imaging modality in intracranial stereotactic radiosurgery (SRS) for defining target volumes. However, wide disparities in MRI resolution exist, which could directly impact accuracy of target delineation. Here, sequences with various MRI resolution were acquired on phantoms to evaluate the effect on volume definition and dosimetric consequence for cranial SRS. Materials/Methods Four T1-weighted MR sequences with increasing 3D resolution were compared, including two Spin Echo (SE) 2D acquisitions with 5mm and 3mm slice thickness (SE5mm, SE3mm) and two gradient echo 3D acquisitions (TFE, BRAVO). The voxel sizes were 0.4×0.4×5.0, 0.5×0.5×3.0, 0.9×0.9×1.25, and 0.4×0.4×0.5 mm3, respectively. Four phantoms with simulated lesions of different shape and volume (range, 0.53-25.0 cm3) were imaged, resulting in 16 total sets of MRIs. Four radiation oncologists provided contours on individual MR image set. All observer contours were compared with ground truth, defined on CT image according to the absolute dimensions of the target structure, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance-to-agreement (MDA), and the ratio between reconstructed and true volume (Ratiovol ). For dosimetric consequence, SRS plans targeting observer volumes were created. The true Paddick conformity index ( C I p a d d i c k t r u e ), calculated with true target volume, was correlated with quality of observer volume. Results All measures of observer contours improved as increasingly higher MRI resolution was provided from SE5mm to BRAVO. The improvement in DSC, HD and MDA was statistically significant (p<0.01). Dosimetrically, C I p a d d i c k t r u e strongly correlated with DSC of the planning observer volume (Pearson's r=0.94, p<0.00001). Conclusions Significant improvement in target definition and reduced inter-observer variation was observed as the MRI resolution improved, which also improved the quality of SRS plans. Results imply that high resolution 3D MR sequences should be used to minimize potential errors in target definition, and multi-slice 2D sequences should be avoided.
Collapse
|
4
|
Kadamkulam Syriac A, Nandu NS, Leone JP. Central Nervous System Metastases from Triple-Negative Breast Cancer: Current Treatments and Future Prospective. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:1-13. [PMID: 35046721 PMCID: PMC8760391 DOI: 10.2147/bctt.s274514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
It is estimated that approximately one-third of patients with triple-negative breast cancer (TNBC) will develop brain metastases. The prognosis for patients with breast cancer brain metastasis has improved in the recent past, especially for hormone receptor and human epidermal growth factor receptor 2 (HER) positive subtypes. However, the overall survival rate for patients with triple-negative subtype remains poor. The development of newer treatment options, including antibody-drug conjugates such as Sacituzumab govitecan, is particularly encouraging. This article reviews the clinical outcomes, challenges, and current approach to the treatment of brain metastasis in TNBC. We have also briefly discussed newer treatment options and ongoing clinical trials. The development of brain metastasis significantly decreases the quality of life of patients with TNBC, and newer treatment strategies and therapeutics are the need of the hour for this disease subgroup.
Collapse
Affiliation(s)
| | - Nitish Singh Nandu
- Department of Hospice and Palliative Medicine, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose Pablo Leone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Mitchell D, Kwon HJ, Kubica PA, Huff WX, O’Regan R, Dey M. Brain metastases: An update on the multi-disciplinary approach of clinical management. Neurochirurgie 2022; 68:69-85. [PMID: 33864773 PMCID: PMC8514593 DOI: 10.1016/j.neuchi.2021.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Brain metastasis (BM) is the most common malignant intracranial neoplasm in adults with over 100,000 new cases annually in the United States and outnumbering primary brain tumors 10:1. OBSERVATIONS The incidence of BM in adult cancer patients ranges from 10-40%, and is increasing with improved surveillance, effective systemic therapy, and an aging population. The overall prognosis of cancer patients is largely dependent on the presence or absence of brain metastasis, and therefore, a timely and accurate diagnosis is crucial for improving long-term outcomes, especially in the current era of significantly improved systemic therapy for many common cancers. BM should be suspected in any cancer patient who develops new neurological deficits or behavioral abnormalities. Gadolinium enhanced MRI is the preferred imaging technique and BM must be distinguished from other pathologies. Large, symptomatic lesion(s) in patients with good functional status are best treated with surgery and stereotactic radiosurgery (SRS). Due to neurocognitive side effects and improved overall survival of cancer patients, whole brain radiotherapy (WBRT) is reserved as salvage therapy for patients with multiple lesions or as palliation. Newer approaches including multi-lesion stereotactic surgery, targeted therapy, and immunotherapy are also being investigated to improve outcomes while preserving quality of life. CONCLUSION With the significant advancements in the systemic treatment for cancer patients, addressing BM effectively is critical for overall survival. In addition to patient's performance status, therapeutic approach should be based on the type of primary tumor and associated molecular profile as well as the size, number, and location of metastatic lesion(s).
Collapse
Affiliation(s)
- D Mitchell
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - HJ Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - PA Kubica
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - WX Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indiana University Purdue University Indianapolis, IN, USA
| | - R O’Regan
- Department of Medicine/Hematology Oncology, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - M Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA,Correspondence Should Be Addressed To: Mahua Dey, MD, University of Wisconsin School of Medicine & Public Health, 600 Highland Ave, Madison, WI 53792; Tel: 317-274-2601;
| |
Collapse
|
6
|
Milano MT, Chiang VLS, Soltys SG, Wang TJC, Lo SS, Brackett A, Nagpal S, Chao S, Garg AK, Jabbari S, Halasz LM, Gephart MH, Knisely JPS, Sahgal A, Chang EL. Executive summary from American Radium Society's appropriate use criteria on neurocognition after stereotactic radiosurgery for multiple brain metastases. Neuro Oncol 2021; 22:1728-1741. [PMID: 32780818 DOI: 10.1093/neuonc/noaa192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The American Radium Society (ARS) Appropriate Use Criteria brain malignancies panel systematically reviewed (PRISMA [Preferred Reporting Items for Systematic Reviews and Meta-Analyses]) published literature on neurocognitive outcomes after stereotactic radiosurgery (SRS) for patients with multiple brain metastases (BM) to generate consensus guidelines. METHODS The panel developed 4 key questions (KQs) to guide systematic review. From 11 614 original articles, 12 were selected. The panel developed model cases addressing KQs and potentially controversial scenarios not addressed in the systematic review (which might inform future ARS projects). Based upon quality of evidence, the panel confidentially voted on treatment options using a 9-point scale of appropriateness. RESULTS The panel agreed that SRS alone is usually appropriate for those with good performance status and 2-10 asymptomatic BM, and usually not appropriate for >20 BM. For 11-15 and 16-20 BM there was (between 2 case variants) agreement that SRS alone may be appropriate or disagreement on the appropriateness of SRS alone. There was no scenario (among 6 case variants) in which conventional whole-brain radiotherapy (WBRT) was considered usually appropriate by most panelists. There were several areas of disagreement, including: hippocampal sparing WBRT for 2-4 asymptomatic BM; WBRT for resected BM amenable to SRS; fractionated versus single-fraction SRS for resected BM, larger targets, and/or brainstem metastases; optimal treatment (WBRT, hippocampal sparing WBRT, SRS alone to all or select lesions) for patients with progressive extracranial disease, poor performance status, and no systemic options. CONCLUSIONS For patients with 2-10 BM, SRS alone is an appropriate treatment option for well-selected patients with good performance status. Future study is needed for those scenarios in which there was disagreement among panelists.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, NY
| | - Veronica L S Chiang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CT
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Alexandria Brackett
- Cushing/Whitney Medical Library, Yale School of Medicine, Yale University, New Haven, CT
| | - Seema Nagpal
- Department of Neurology, Stanford University School of Medicine, Stanford, CT
| | - Samuel Chao
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Amit K Garg
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Albuquerque, NM
| | - Siavash Jabbari
- Laurel Amtower Cancer Institute and Neuro-oncology Center, Sharp Healthcare, San Diego, CA
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | | | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Eric L Chang
- Department of Radiation Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| |
Collapse
|
7
|
Tien CJ, Bond JE, Chen ZJ. Associating dose-volume characteristics with theoretical radiobiological metrics for rapid Gamma Knife stereotactic radiosurgery plan evaluation. J Appl Clin Med Phys 2020; 21:132-140. [PMID: 32910543 PMCID: PMC7592963 DOI: 10.1002/acm2.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose To examine general dose–volume characteristics in Gamma Knife (GK) plans which may be associated with higher tumor control probability (TCP) and equivalent uniform dose (EUD) using characteristic curve sets. Methods Two sets of dose–volume histograms (DVHs) were exported alongside an analytical purpose‐generated DVH: (a) single‐shot large collimator (8 or 16 mm) emulated with multiple shots of 4 mm collimator. (b) shot‐within‐shot (SWS) technique with isodose lines (IDLs) of 40–75%. TCP, average dose, EUD in single‐fraction (EUDT) and 2 Gy fractionated regimens (EUDR) were examined for trends with cumulative DVH (cDVH) shape as calculated using a linear‐quadratic cell survival model (α/β = 10.0 Gy, N0 = 1 × 106) with both α = 0.20 Gy−1 and α = 0.23 Gy−1. Results Using α = 0.20 Gy−1 (α = 0.23 Gy−1), plans in the analytical set with higher shoulder regions had TCP, EUDT, EUDR increased by 180%, 5.9%, 10.7% (11.2%, 6.3%, 10.0%), respectively. With α = 0.20 Gy−1 (α = 0.23 Gy−1), plans with higher heels had TCP, EUDT, EUDR increased by 4.0%, <1%, <1% (0.6%, <1%, <1%), respectively. In emulating a 16 (8) mm collimator, 64 (12) shots of the small collimators were used. Plans based on small collimators had higher shoulder regions and, with α = 0.20 Gy−1 (α = 0.23 Gy−1), TCP, EUDT, EUDR was increased up to 351.4%, 5.0%, 8.8% (270.4%, 5.0%, 6.8%) compared with the single‐shot large collimator. Delivery times ranged from 10.2 to 130.3 min. The SWS technique used 16:8 mm collimator weightings ranging from 1:2 to 9.2:1 for 40–75% IDL. With α = 0.20 Gy−1 (α = 0.23 Gy−1), the 40% IDL plan had the highest shoulder with increased TCP, EUDT, EUDR by 130.7%, 9.6%, 17.1% (12.9%, 9.1%, 16.4%) over the 75% IDL plan. Delivery times ranged 6.9–13.8 min. Conclusions The magnitude of the shoulder region characteristic to GK cDVHs may be used to rapidly identify superior plan among candidates. Practical issues such as delivery time may require further consideration.
Collapse
Affiliation(s)
- Christopher J Tien
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - James E Bond
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Zhe Jay Chen
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Grosu AL, Frings L, Bentsalo I, Oehlke O, Brenner F, Bilger A, Fennell JT, Rothe T, Schneider-Fuchs S, Graf E, Schmoor C, Beck J, Becker G, Bock M, Egger K, Urbach H, Lahmann C, Popp I. Whole-brain irradiation with hippocampal sparing and dose escalation on metastases: neurocognitive testing and biological imaging (HIPPORAD) - a phase II prospective randomized multicenter trial (NOA-14, ARO 2015-3, DKTK-ROG). BMC Cancer 2020; 20:532. [PMID: 32513138 PMCID: PMC7281918 DOI: 10.1186/s12885-020-07011-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Whole brain radiation therapy (WBRT) is the standard therapy for multiple brain metastases. However, WBRT has a poor local tumor control and is associated with a decline in neurocognitive function (NCF). Aim of this trial is to assess the efficacy and safety of a new treatment method, the WBRT with hippocampus avoidance (HA) combined with the simultaneous integrated boost (SIB) on metastases/resection cavities (HA-WBRT+SIB). METHODS This is a prospective, randomized, two-arm phase II multicenter trial comparing the impact of HA on NCF after HA-WBRT+SIB versus WBRT+SIB in patients with multiple brain metastases. The study design is double-blinded. One hundred thirty two patients are to be randomized with a 1:1 allocation ratio. Patients between 18 and 80 years old are recruited, with at least 4 brain metastases of solid tumors and at least one, but not exceeding 10 metastases ≥5 mm. Patients must be in good physical condition and have no metastases/resection cavities in or within 7 mm of the hippocampus. Patients with dementia, meningeal disease, cerebral lymphomas, germ cell tumors, or small cell carcinomas are excluded. Previous irradiation and resection of metastases, as well as the number and size of metastases to be boosted have to comply with certain restrictions. Patients are randomized between the two treatment arms: HA-WBRT+SIB and WBRT+SIB. WBRT is to be performed with 30 Gy in 12 daily fractions and the SIB with 51 Gy/42 Gy in 12 daily fractions on 95% of volume for metastases/resection cavities. In the experimental arm, the dose to the hippocampi is restricted to 9 Gy in 98% of the volume and 17Gy in 2% of the volume. NCF testing is scheduled before WBRT, after 3 (primary endpoint), 9, 18 months and yearly thereafter. Clinical and imaging follow-ups are performed 6 and 12 weeks after WBRT, after 3, 9, 18 months and yearly thereafter. DISCUSSION This is a protocol of a randomized phase II trial designed to test a new strategy of WBRT for preventing cognitive decline and increasing tumor control in patients with multiple brain metastases. TRIAL REGISTRATION The HIPPORAD trial is registered with the German Clinical Trials Registry (DRKS00004598, registered 2 June 2016).
Collapse
Affiliation(s)
- Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Frings
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Iryna Bentsalo
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Oliver Oehlke
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Radiation Oncology, Kliniken Maria Hilf GmbH Mönchengladbach, Mönchengladbach, Germany
| | - Franziska Brenner
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
- Present affiliation: Department of Radiation Oncology, Ortenau-Klinikum Offenburg-Gengenbach, Offenburg, Germany
| | - Angelika Bilger
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Jamina Tara Fennell
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Thomas Rothe
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Sabine Schneider-Fuchs
- Clinical Trials Unit, Faculty of Medicine, Medical Center - University of Freiburg, Elsässer Straße 2, 79110, Freiburg, Germany
| | - Erika Graf
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg, Germany
| | - Claudia Schmoor
- Clinical Trials Unit, Faculty of Medicine, Medical Center - University of Freiburg, Elsässer Straße 2, 79110, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Gerhild Becker
- Department of Palliative Care, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany
| | - Michael Bock
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center - University of Freiburg, Killian Str. 5a, 79106, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany
| | - Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Ilinca Popp
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.
| |
Collapse
|