1
|
Markouli M, Skouras P, Piperi C. Impact of cuproptosis in gliomas pathogenesis with targeting options. Chem Biol Interact 2025; 408:111394. [PMID: 39848557 DOI: 10.1016/j.cbi.2025.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions. Although the precise molecular mechanisms of cuproptosis are not fully elucidated, there is evidence that copper ions can target mitochondrial lipoylated proteins, disrupting the tricarboxylic acid cycle and electron transport chain, thus leading to deregulated mitochondrial metabolism, protein aggregation and cell death. Of importance, altered expression of copper transporters and abnormally high intracellular copper levels have been observed in several cancer types, including gliomas, contributing to tumor growth and metastasis. Furthermore, a range of prognostic models incorporating cuproptosis-related genes and lncRNAs have been proposed and are currently under clinical validation. Drugs modulating cuproptosis or interfering with copper-binding proteins are under development, causing metabolic failure and cell death, thus offering potential new avenues for glioma diagnosis and therapy. In this article, we explore the role of copper metabolism in gliomas and the potential synergistic effects of cuproptosis-based treatments with current therapies, in effective targeting of tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
2
|
Malaymar Pinar D, Göös H, Tan Z, Kumpula EP, Chowdhury I, Wang Z, Zhang Q, Salokas K, Keskitalo S, Wei GH, Kumbasar A, Varjosalo M. Nuclear Factor I Family Members are Key Transcription Factors Regulating Gene Expression. Mol Cell Proteomics 2025; 24:100890. [PMID: 39617063 PMCID: PMC11775196 DOI: 10.1016/j.mcpro.2024.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The Nuclear Factor I (NFI) family of transcription factors (TFs) plays key roles in cellular differentiation, proliferation, and homeostasis. As such, NFI family members engage in a large number of interactions with other proteins and chromatin. However, despite their well-established significance, the NFIs' interactomes, their dynamics, and their functions have not been comprehensively examined. Here, we employed complementary omics-level techniques, i.e. interactomics (affinity purification mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID)), and chromatin immunoprecipitation sequencing (ChIP-Seq), to obtain a comprehensive view of the NFI proteins and their interactions in different cell lines. Our analyses included all four NFI family members, and a less-studied short isoform of NFIB (NFIB4), which lacks the DNA binding domain. We observed that, despite exhibiting redundancy, each family member had unique high-confidence interactors and target genes, suggesting distinct roles within the transcriptional regulatory networks. The study revealed that NFIs interact with other TFs to co-regulate a broad range of regulatory networks and cellular processes. Notably, time-dependent proximity-labeling unveiled a highly dynamic nature of NFI protein-protein interaction networks and hinted at the temporal modulation of NFI interactions. Furthermore, gene ontology (GO) enrichment analysis of NFI interactome and targetome revealed the involvement of NFIs in transcriptional regulation, chromatin organization, cellular signaling pathways, and pathways related to cancer. Additionally, we observed that NFIB4 engages with proteins associated with mRNA regulation, which suggests that NFIs have roles beyond traditional DNA binding and transcriptional modulation. We propose that NFIs may function as potential pioneering TFs, given their role in regulating the DNA binding ability of other TFs and their interactions with key chromatin remodeling complexes, thereby influencing a wide range of cellular processes. These insights into NFI protein-protein interactions and their dynamic, context-dependent nature provide a deeper understanding of gene regulation mechanisms and hint at the role of NFIs as master regulators.
Collapse
Affiliation(s)
- Dicle Malaymar Pinar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Helka Göös
- iCell, Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Zenglai Tan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qin Zhang
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Tang Z, Cao C, Tang W, Ye Y, Chen Z, Shen Y. Neuronal Differentiation of Human Glioma Cells Induced by Parthenolide Under In Vitro Conditions. Biomedicines 2024; 12:2543. [PMID: 39595109 PMCID: PMC11591755 DOI: 10.3390/biomedicines12112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: Previous drug repositioning studies have suggested that parthenolide may be a differentiation-inducing agent for glioma cells. This study aimed to experimentally verify the neuronal differentiation-inducing effects and proliferative impact of parthenolide on human glioma cells and explore its potential mechanisms. Methods: HE staining was used to observe the morphological changes in human glioma cell lines U87 and A172 induced by parthenolide. Immunocytochemistry was conducted to detect the expression of differentiation markers. The Ki-67 detection and CCK-8 assay were used to assess the effects of parthenolide on cell proliferation. The sphere formation assay was conducted to evaluate the self-renewal. Glioma stem cells (GSCs) derived from U87 cells were utilized to assess the ability of parthenolide to induce differentiation in GSCs. Western blot was used to detect the expression of histone deacetylase 1 (HDAC1). Bioinformatics analysis based on the CGGA database was conducted to evaluate the role of HDAC1 in glioma. Results: Parthenolide (4 μM) altered the morphology of U87 and A172 cells, as elongated cell projections were observed. Parthenolide induced glioma cells to express neuronal markers NeuN, MAP2, SYP, and NEFL, but not astrocyte or oligodendrocyte markers. Parthenolide significantly inhibited proliferation and self-renewal in glioma cells. Similar effects were observed in U87 GSCs. Furthermore, parthenolide downregulated HDAC1 expression in glioma cells, and the bioinformatics analysis revealed a potential relationship between neuronal characteristics and low expression of HDAC1 in glioma. Conclusion: Parthenolide induced neuronal differentiation and inhibited the cell proliferation in human glioma cells, which might be associated with the inhibition of HDAC1.
Collapse
Affiliation(s)
- Zhaoqi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Chang Cao
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yanrong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhenhui Chen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen 361015, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Desterke C, Francés R, Monge C, Marchio A, Pineau P, Mata-Garrido J. Alternative Balance between Transcriptional and Epigenetic Regulation during Developmental Proliferation of Human Cranial Neural Crest Cells. Cells 2024; 13:1634. [PMID: 39404397 PMCID: PMC11476078 DOI: 10.3390/cells13191634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cranial neural crest cells are implicated in multiple transcriptional events at the different stages of differentiation during development. The alteration of some transcription factors expressed during neural crest development, like PAX7, could be implicated in the etiology of face malformation in murine models. Epigenetic regulation has been shown to be an important mechanistic actor in the control of timing and the level of gene expression at different stages of neural crest development. During this work, we investigated the interconnection between epigenetics and transcription factors across a diversity of human development cranial neural crest cells. Across a diversity of neural cells from human developing cranial tissues, in accordance with their proliferation stage, an alternative balance of regulation between transcription factors and epigenetic factors was identified.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay and INSERM UMRS1310, 94270 Le Kremlin-Bicêtre, France;
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Agnès Marchio
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Jorge Mata-Garrido
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
5
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
6
|
miR-181d-5p Protects against Retinal Ganglion Cell Death after Blunt Ocular Injury by Regulating NFIA-Medicated Astrocyte Development. Mediators Inflamm 2022; 2022:5400592. [PMID: 36254157 PMCID: PMC9569213 DOI: 10.1155/2022/5400592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic optic neuropathy (TON) refers to damage to the optic nerve resulting from direct and indirect trauma to the head and face. One of the important pathological processes in TON is the death of retinal ganglion cells (RGCs), but the cause of RGCs death remains unclear. We aimed to explore the mechanisms of RGCs death in an experimental TON model. Methods Optic nerve crush injury was induced in ten New Zealand white rabbits. On the 1st, 3rd, 7th, 14th, and 28th days after the operation, the retinal tissues of the rabbits were observed pathologically by hematoxylin-eosin staining. The expression of POU-homeodomain transcription factor Brn3a and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence to evaluate the number of RGCs and astrocytes, respectively. miRNA expression and protein levels were assessed by RT-qPCR and western blot methods, respectively. Finally, the malondialdehyde content, superoxide dismutase activity, and proinflammatory factor levels were measured by ELISA. Western blot and dual-luciferase reporter assays were used to elucidate the relationship between miR-181d-5p and nuclear factor I-A (NFIA). Results Blunt ocular trauma increased oxidative stress and apoptosis and reduced ganglion cell layer (GCL) density. The expression of miR-181d-5p was decreased in retinal tissues, and its overexpression relieved RGCs death, astrocyte development, oxidative stress, and inflammation of the retina, which were reversed by NFIA overexpression. Conclusion miR-181d-5p can protect against the deterioration of TON by inhibiting RGCs death, astrocyte development, oxidative stress, and inflammation by targeting NFIA. This study provides new insight into early medical intervention in patients with TON.
Collapse
|
7
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
8
|
Duan S, Sawyer TW, Sontz RA, Wieland BA, Diaz AF, Merchant JL. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 14:1025-1051. [PMID: 35835391 PMCID: PMC9490044 DOI: 10.1016/j.jcmgh.2022.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Efforts to characterize the signaling mechanisms that underlie gastroenteropancreatic neoplasms (GEP-NENs) are precluded by a lack of comprehensive models that recapitulate pathogenesis. Investigation into a potential cell-of-origin for gastrin-secreting NENs revealed a non-cell autonomous role for loss of menin in neuroendocrine cell specification, resulting in an induction of gastrin in enteric glia. Here, we investigated the hypothesis that cell autonomous Men1 inactivation in glial fibrillary acidic protein (GFAP)-expressing cells induced neuroendocrine differentiation and tumorigenesis. METHODS Transgenic GFAPΔMen1 mice were generated by conditional GFAP-directed Men1 deletion in GFAP-expressing cells. Cre specificity was confirmed using a tdTomato reporter. GFAPΔMen1 mice were evaluated for GEP-NEN development and neuroendocrine cell hyperplasia. Small interfering RNA-mediated Men1 silencing in a rat enteric glial cell line was performed in parallel. RESULTS GFAPΔMen1 mice developed pancreatic NENs, in addition to pituitary prolactinomas that phenocopied the human MEN1 syndrome. GFAPΔMen1 mice exhibited gastric neuroendocrine hyperplasia that coincided with a significant loss of GFAP expression. Men1 deletion induced loss of glial-restricted progenitor lineage markers and an increase in neuroendocrine genes, suggesting a reprogramming of GFAP+ cells. Deleting Kif3a, a mediator of Hedgehog signaling, in GFAP-expressing cells attenuated neuroendocrine hyperplasia by restricting the neuroendocrine cell fate. Similar results in the pancreas were observed when Sox10 was used to delete Men1. CONCLUSIONS GFAP-directed Men1 inactivation exploits glial cell plasticity in favor of neuroendocrine differentiation.
Collapse
Affiliation(s)
- Suzann Duan
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Travis W. Sawyer
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona
| | - Ricky A. Sontz
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Bradley A. Wieland
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Andres F. Diaz
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona
| | - Juanita L. Merchant
- University of Arizona College of Medicine, Department of Medicine, Division of Gastroenterology, Tucson, Arizona,Correspondence Address correspondence to: Dr Juanita L. Merchant, University of Arizona, 1515 N. Campbell Ave, Tucson, AZ 85724; tel: (520) 626-7897; fax: (520) 626-1291.
| |
Collapse
|
9
|
Wang H, Sun Y, Ma G, Ke D, Zeng Z, Zhang X, Zhang W. The Relationship between Expression of Nuclear Factor I and the Progressive Occurrence of Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1272729. [PMID: 35669369 PMCID: PMC9166938 DOI: 10.1155/2022/1272729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022]
Abstract
The loss of nuclear factor I (NFI) function can lead to defects in Muller's glial differentiation, abnormalities of retinal morphology, and changes in retinal neurons numbers, which are highly involved in diabetic retinopathy (DR). In this study, we addressed the roles of NFIA and NFIB gene expression in the development of DR by using diabetes mellitus (DM) rat models. Retinal histologies were examined, and the expression of NFIA and NFIB at mRNA and protein levels was detected. The results showed that retinal edema and disordered cell arrangement frequently occurred in DR rats. The expressions of NFIA and NFIB in retinal tissue were significantly decreased in DM rats with DR complications. After further inhibiting the expression of NFIA gene in DM rats by using RNA-silencing, majority of DM rats occurred retinopathy and lens fibrosis, which indicated the relationship between decreased expression of NFI and occurrence of retinopathy in DM.
Collapse
Affiliation(s)
- Han Wang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yufei Sun
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Guixin Ma
- Department of Medical Microbiology, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Dingxin Ke
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Zhou Zeng
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Xianjuan Zhang
- Department of Medical Microbiology, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Wanming Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
- Qingdao Wanming Biocell Pharmaceutics Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci 2022; 23:ijms23073720. [PMID: 35409080 PMCID: PMC8998804 DOI: 10.3390/ijms23073720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Gliomas portray a large and heterogeneous group of CNS tumors, encompassing a wide range of low- to high-grade tumors, as defined by histological and molecular characteristics. The identification of signature mutations and other molecular abnormalities has largely impacted tumor classification, diagnosis, and therapy. Transcription factors (TFs) are master regulators of gene expression programs, which ultimately shape cell fate and homeostasis. A variety of TFs have been detected to be aberrantly expressed in brain tumors, being highly implicated in critical pathological aspects and progression of gliomas. Herein, we describe a selection of oncogenic (GLI-1/2/3, E2F1–8, STAT3, and HIF-1/2) and tumor suppressor (NFI-A/B, TBXT, MYT1, and MYT1L) TFs that are deregulated in gliomas and are subsequently associated with tumor development, progression, and migratory potential. We further discuss the current targeting options against these TFs, including chemical (Bortezomib) and natural (Plumbagin) compounds, small molecules, and inhibitors, and address their potential implications in glioma therapy.
Collapse
|
11
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
12
|
Meunier L, Hirsch TZ, Caruso S, Imbeaud S, Bayard Q, Roehrig A, Couchy G, Nault JC, Llovet JM, Blanc JF, Calderaro J, Zucman-Rossi J, Letouzé E. DNA Methylation Signatures Reveal the Diversity of Processes Remodeling Hepatocellular Carcinoma Methylomes. Hepatology 2021; 74:816-834. [PMID: 33713365 DOI: 10.1002/hep.31796] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS DNA methylation patterns are highly rearranged in HCCs. However, diverse sources of variation are intermingled in cancer methylomes, precluding the precise characterization of underlying molecular mechanisms. We developed a computational framework (methylation signature analysis with independent component analysis [MethICA]) leveraging independent component analysis to disentangle the diverse processes contributing to DNA methylation changes in tumors. APPROACH AND RESULTS Applied to a collection of 738 HCCs, MethICA unraveled 13 stable methylation components preferentially active in specific chromatin states, sequence contexts, and replication timings. These included signatures of general processes associated with sex and age but also signatures related to specific driver events and molecular subgroups. Catenin beta 1 mutations were major modulators of methylation patterns in HCC, characterized by a targeted hypomethylation of transcription factor 7-bound enhancers in the vicinity of Wnt target genes as well as a widespread hypomethylation of late-replicated partially methylated domains. By contrast, demethylation of early replicated highly methylated domains was a signature of replication stress, leading to an extensive hypomethylator phenotype in cyclin-activated HCC. Inactivating mutations of the chromatin remodeler AT-rich interactive domain-containing protein 1A were associated with epigenetic silencing of differentiation-promoting transcriptional networks, also detectable in cirrhotic liver. Finally, a hypermethylation signature targeting polycomb-repressed chromatin domains was identified in the G1 molecular subgroup with progenitor features. CONCLUSIONS This study elucidates the diversity of processes remodeling HCC methylomes and reveals the epigenetic and transcriptional impact of driver alterations.
Collapse
Affiliation(s)
- Léa Meunier
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Théo Z Hirsch
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Stefano Caruso
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Sandrine Imbeaud
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Quentin Bayard
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Amélie Roehrig
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Gabrielle Couchy
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Jean-Charles Nault
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance.,Service d'HépatologieHôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de ParisBondyFrance.,Unité de Formation et de Recherche Santé Médecine et Biologie HumaineUniversité Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris CitéParisFrance
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver DiseasesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNY.,Translational Research in Hepatic Oncology, Liver UnitIDIBAPS, Hospital ClinicUniversity of BarcelonaBarcelonaCataloniaSpain.,Institució Catalana d'Estudis Avançats (ICREA)BarcelonaSpain
| | - Jean-Frédéric Blanc
- Department of Hepato-Gastroenterology and Digestive OncologyCHU de BordeauxHaut-Lévêque HospitalBordeaux, AquitaineFrance.,Department of PathologyCHU de BordeauxPellegrin HospitalBordeaux, AquitaineFrance.,Bordeaux Research in Translational OncologyUniversité BordeauxBordeaux, AquitaineFrance
| | - Julien Calderaro
- Service d'AnatomopathologieHôpital Henri Mondor; Université Paris Est, INSERM U955, Team 18, Institut Mondor de Recherche BiomédicaleCréteilFrance
| | - Jessica Zucman-Rossi
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance.,Hôpital Européen Georges PompidouAssistance Publique-Hôpitaux de ParisParisFrance
| | - Eric Letouzé
- Centre de Recherche des CordeliersSorbonne Université, INSERM, Université de Paris, Université Paris Nord, Functional Genomics of Solid Tumors Laboratory, Equipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
13
|
Chen KS, Lynton Z, Lim JWC, Robertson T, Gronostajski RM, Bunt J, Richards LJ. NFIA and NFIB function as tumour suppressors in high-grade glioma in mice. Carcinogenesis 2021; 42:357-368. [PMID: 33346791 DOI: 10.1093/carcin/bgaa139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are implicated in both brain development and cancer in mice and humans and play an essential role in glial differentiation. NFI expression is reduced in human astrocytoma samples, particularly those of higher grade, whereas over-expression of NFI protein can induce the differentiation of glioblastoma cells within human tumour xenografts and in glioblastoma cell lines in vitro. These data indicate that NFI proteins may act as tumour suppressors in glioma. To test this hypothesis, we generated complex mouse genetic crosses involving six alleles to target gene deletion of known tumour suppressor genes that induce endogenous high-grade glioma in mice, and overlaid this with loss of function Nfi mutant alleles, Nfia and Nfib, a reporter transgene and an inducible Cre allele. Deletion of Nfi resulted in reduced survival time of the mice, increased tumour load and a more aggressive tumour phenotype than observed in glioma mice with normal expression of NFI. Together, these data indicate that NFI genes represent a credible target for both diagnostic analyses and therapeutic strategies to combat high-grade glioma.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zorana Lynton
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Robertson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia.,Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Morcom L, Edwards TJ, Rider E, Jones-Davis D, Lim JW, Chen KS, Dean RJ, Bunt J, Ye Y, Gobius I, Suárez R, Mandelstam S, Sherr EH, Richards LJ. DRAXIN regulates interhemispheric fissure remodelling to influence the extent of corpus callosum formation. eLife 2021; 10:61618. [PMID: 33945466 PMCID: PMC8137145 DOI: 10.7554/elife.61618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Corpus callosum dysgenesis (CCD) is a congenital disorder that incorporates either partial or complete absence of the largest cerebral commissure. Remodelling of the interhemispheric fissure (IHF) provides a substrate for callosal axons to cross between hemispheres, and its failure is the main cause of complete CCD. However, it is unclear whether defects in this process could give rise to the heterogeneity of expressivity and phenotypes seen in human cases of CCD. We identify incomplete IHF remodelling as the key structural correlate for the range of callosal abnormalities in inbred and outcrossed BTBR mouse strains, as well as in humans with partial CCD. We identify an eight base-pair deletion in Draxin and misregulated astroglial and leptomeningeal proliferation as genetic and cellular factors for variable IHF remodelling and CCD in BTBR strains. These findings support a model where genetic events determine corpus callosum structure by influencing leptomeningeal-astroglial interactions at the IHF.
Collapse
Affiliation(s)
- Laura Morcom
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Timothy J Edwards
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia.,Faculty of Medicine, Brisbane, Australia
| | - Eric Rider
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Dorothy Jones-Davis
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Jonathan Wc Lim
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Kok-Siong Chen
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Ryan J Dean
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Jens Bunt
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Yunan Ye
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Ilan Gobius
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | - Simone Mandelstam
- Department of Radiology, University of Melbourne, Royal Children's Hospital, Parkville, Australia
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Linda J Richards
- The University of Queensland, Queensland Brain Institute, Brisbane, Australia.,School of Biomedical Sciences, Brisbane, Australia
| |
Collapse
|
15
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Xu W, Chen B, Ke D, Chen X. MicroRNA-138-5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance. Cancer Cell Int 2020; 20:475. [PMID: 33013202 PMCID: PMC7528477 DOI: 10.1186/s12935-020-01573-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer ranks among the most lethal diseases worldwide. Although much progress has been made in research and treatment of colorectal cancer in recent years, the underlying mechanisms related to migration of the cancer cells and the reason for chemoresistance still remain unclear. In this research, we explored the underlying effect of miR-138-5p in colorectal cancer. Methods We used qRT-PCR to investigate the expression of miR-138-5p, Snail1, NFIB in colorectal cancer cells. Lentiviral vectors containing miR-138-5p mimics and inhibitors were constructed and transfected cells. Wound healing assay was applied to illustrate interferences on cell migration. Fluorouracial, doxorubicin, cisplat in were used to detect chemotherapy resistance. In order to identify target genes, bioinformatic methods were applied. Snail1 and NFIB protein expression in stable cell lines was detected using Western blot. Double luciferase and CHIP experiment were used to verify binding sites. We used rescue experiments to further explore the interactions among Snail1, NFIB and miR-138-5p. Results The expression of miR-138-5p in colorectal cancer cells was low. miR-138-5p inhibited cell migration in colorectal cancer, and could negatively regulate chemotherapy resistance. miR-138-5p targeted NFIB, and regulated Snail1 expression, which mediated colorectal cancer cell migration and chemotherapy resistance. Conclusions Our research indicates that miR-138-5p could be a crucial modulator controlling colorectal cancer cell migration and chemoresistance, by acting upon the NFIB-Snail1 axis. miR-138-5p has an emerging prospect to be exploited as a new target for colorectal cancer.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| | - Dianshan Ke
- Department of Cell Biology, Southern Medical University, 510515 Guangzhou, Guangdong China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dong Ming Road, Zhengzhou, 450008 Henan People's Republic of China
| |
Collapse
|
17
|
Gaps and Doubts in Search to Recognize Glioblastoma Cellular Origin and Tumor Initiating Cells. JOURNAL OF ONCOLOGY 2020; 2020:6783627. [PMID: 32774372 PMCID: PMC7396023 DOI: 10.1155/2020/6783627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Cellular origin of glioblastoma (GB) is constantly discussed and remains a controversial subject. Unfortunately, neurobiologists are not consistent in defining neural stem cells (NSC) complicating this issue even further. Nevertheless, some suggestions referring to GB origin can be proposed based on comparing GB to central nervous system (CNS) cells. Firstly, GB cells show in vitro differentiation pattern similar to GFAP positive neural cells, rather than classical (GFAP negative) NSC. GB cells in primary cultures become senescent in vitro, similar to GFAP positive neural progenitors, whereas classical NSC proliferate in vitro infinitely. Classical NSC apoptosis triggered by introduction of IDH1R132H undermines hypothesis stating that IDH-mutant (secondary) GB origins from these NSC. Analysis of biological role of typical IDH-wildtype (primary) GB oncogene such as EGFRvIII also favors GFAP positive cells rather than classical NSC as source of GB. Single-cell NGS and single-cell transcriptomics also suggest that GFAP positive cells are GB origin. Considering the above-mentioned and other discussed in articles data, we suggest that GFAP positive cells (astrocytes, radial glia, or GFAP positive neural progenitors) are more likely to be source of GB than classical GFAP negative NSC, and further in vitro assays should be focused on these cells. It is highly possible that several populations of tumor initiating cells (TIC) exist within GB, adjusting their phenotype and even genotype to various environmental conditions including applied therapy and periodically going through different TIC states as well as non-TIC state. This adjustment is driven by changes in number and types of amplicons. The existence of various populations of TIC would enable creating neoplastic foci in different environments and increase tumor aggressiveness.
Collapse
|
18
|
Zou P, Zhang J, Xia Y, Kanchana K, Guo G, Chen W, Huang Y, Wang Z, Yang S, Liang G. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget 2016; 6:5860-76. [PMID: 25714022 PMCID: PMC4467407 DOI: 10.18632/oncotarget.3333] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/03/2015] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment.
Collapse
Affiliation(s)
- Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Junru Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Karvannan Kanchana
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Guilong Guo
- Department of Oncological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenbo Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Yi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Zhe Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, China
| |
Collapse
|