1
|
Asman P, Tasnim I, Muir M, Hall M, Noll K, Prinsloo S, Pellizzer G, Bhavsar S, Tummala S, Ince N, Prabhu S. Intraoperative Cortical Sensorimotor Mapping During Glioma Resection Monitored With Drum Playing During Awake Craniotomy: A Case Report. Case Rep Oncol Med 2025; 2025:4625899. [PMID: 40040926 PMCID: PMC11879599 DOI: 10.1155/crom/4625899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
Background: Tumors infiltrating the precentral gyrus remain a unique operative challenge. In this study, we explored a novel approach for awake craniotomy involving a patient playing a drum pad during resection of low-grade glioma, with the use of preoperative navigated transcranial magnetic stimulation (nTMS)-generated diffusion tensor imaging (DTI) and high-density real-time electrocorticography (ECoG). Observation: A 36-year-old left-handed male with a low-grade glioma in the left hemisphere hand knob region had a grand mal seizure. We combined preoperative nTMS-DTI with intraoperative passive functional mapping using high-density real-time ECoG. During an awake craniotomy, the patient played a drum pad while we assessed somatosensory-evoked potentials (SSEPs) using a 64-channel ECoG grid. This confirmed the absence of motor-evoked potentials (MEPs) over the tumor area, consistent with nTMS findings. Continuous monitoring of the patient's drum pad performance during the resection allowed for a gross total resection (GTR) of the tumor. Following the resection, he experienced some weakness in the intrinsic muscles of his right hand, which returned to full normal function at 6 months. At the end of 1 year, he remained seizure-free. Conclusion: A multimodal mapping strategy combined with awake monitoring of drum playing enabled preservation of function while achieving GTR in a patient with a motor-eloquent glioma.
Collapse
Affiliation(s)
- Priscella Asman
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Israt Tasnim
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mathew Hall
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Kyle Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Giuseppe Pellizzer
- Research Service, Minneapolis VA Health Care System, Departments of Neurology and Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shreyas Bhavsar
- Department of Anesthesiology and Perioperative Care, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nuri Ince
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
- Department of Neurosurgery and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Osawa S, Miyakita Y, Takahashi M, Ohno M, Yanagisawa S, Kawauchi D, Omura T, Fujita S, Tsuchiya T, Matsumi J, Sato T, Narita Y. The Safety and Usefulness of Awake Surgery as a Treatment Modality for Glioblastoma: A Retrospective Cohort Study and Literature Review. Cancers (Basel) 2024; 16:2632. [PMID: 39123359 PMCID: PMC11312087 DOI: 10.3390/cancers16152632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Awake surgery contributes to the maximal safe removal of gliomas by localizing brain function. However, the efficacy and safety thereof as a treatment modality for glioblastomas (GBMs) have not yet been established. In this study, we analyzed the outcomes of awake surgery as a treatment modality for GBMs, response to awake mapping, and the factors correlated with mapping failure. Patients with GBMs who had undergone awake surgery at our hospital between March 2010 and February 2023 were included in this study. Those with recurrence were excluded from this study. The clinical characteristics, response to awake mapping, extent of resection (EOR), postoperative complications, progression-free survival (PFS), overall survival (OS), and factors correlated with mapping failure were retrospectively analyzed. Of the 32 participants included in this study, the median age was 57 years old; 17 (53%) were male. Awake mapping was successfully completed in 28 participants (88%). A positive response to mapping and limited resection were observed in 17 (53%) and 13 participants (41%), respectively. The EOR included gross total, subtotal, and partial resections and biopsies in 19 (59%), 8 (25%), 3 (9%), and 2 cases (6%), respectively. Eight (25%) and three participants (9%) presented with neurological deterioration in the acute postoperative period and at 3 months postoperatively, respectively. The median PFS and OS were 15.7 and 36.9 months, respectively. The time from anesthetic induction to extubation was statistically significantly longer in the mapping failure cohort than that in the mapping success cohort. Functional areas could be detected during awake surgery in participants with GBMs. Thus, awake mapping influences intraoperative discernment, contributes to the preservation of brain function, and improves treatment outcomes.
Collapse
Affiliation(s)
- Sho Osawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Daisuke Kawauchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Takaki Omura
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Shohei Fujita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Takahiro Tsuchiya
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| | - Junya Matsumi
- Department of Anesthesiology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (J.M.); (T.S.)
| | - Tetsufumi Sato
- Department of Anesthesiology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (J.M.); (T.S.)
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (S.O.); (Y.M.); (M.T.); (M.O.); (S.Y.); (D.K.); (T.O.); (S.F.); (T.T.)
| |
Collapse
|
3
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Virtual Reality-Assisted Awake Craniotomy: A Retrospective Study. Cancers (Basel) 2023; 15:cancers15030949. [PMID: 36765906 PMCID: PMC9913455 DOI: 10.3390/cancers15030949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Awake craniotomy (AC) with brain mapping for language and motor functions is often performed for tumors within or adjacent to eloquent brain regions. However, other important functions, such as vision and visuospatial and social cognition, are less frequently mapped, at least partly due to the difficulty of defining tasks suitable for the constrained AC environment. OBJECTIVE The aim of this retrospective study was to demonstrate, through illustrative cases, how a virtual reality headset (VRH) equipped with eye tracking can open up new possibilities for the mapping of language, the visual field and complex cognitive functions in the operating room. METHODS Virtual reality (VR) tasks performed during 69 ACs were evaluated retrospectively. Three types of VR tasks were used: VR-DO80 for language evaluation, VR-Esterman for visual field assessment and VR-TANGO for the evaluation of visuospatial and social functions. RESULTS Surgery was performed on the right hemisphere for 29 of the 69 ACs performed (42.0%). One AC (1.5%) was performed with all three VR tasks, 14 ACs (20.3%) were performed with two VR tasks and 54 ACs (78.3%) were performed with one VR task. The median duration of VRH use per patient was 15.5 min. None of the patients had "VR sickness". Only transitory focal seizures of no consequence and unrelated to VRH use were observed during AC. Patients were able to perform all VR tasks. Eye tracking was functional, enabling the medical team to analyze the patients' attention and exploration of the visual field of the VRH directly. CONCLUSIONS This preliminary experiment shows that VR approaches can provide neurosurgeons with a way of investigating various functions, including social cognition during AC. Given the rapid advances in VR technology and the unbelievable sense of immersion provided by the most recent devices, there is a need for ongoing reflection and discussions of the ethical and methodological considerations associated with the use of these advanced technologies in AC and brain mapping procedures.
Collapse
|
5
|
Raffa G, Marzano G, Curcio A, Espahbodinea S, Germanò A, Angileri FF. Personalized surgery of brain tumors in language areas: the role of preoperative brain mapping in patients not eligible for awake surgery. Neurosurg Focus 2022; 53:E3. [PMID: 39264003 DOI: 10.3171/2022.9.focus22415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Awake surgery represents the gold standard for resection of brain tumors close to the language network. However, in some cases patients may be considered not eligible for awake craniotomy. In these cases, a personalized brain mapping of the language network may be achieved by navigated transcranial magnetic stimulation (nTMS), which can guide resection in patients under general anesthesia. Here the authors describe their tailored nTMS-based strategy and analyze its impact on the extent of tumor resection (EOR) and language outcome in a series of patients not eligible for awake surgery. METHODS The authors reviewed data from all patients harboring a brain tumor in or close to the language network who were considered not eligible for awake surgery and were operated on during asleep surgery between January 2017 and July 2022, under the intraoperative guidance of nTMS data. The authors analyzed the effectiveness of nTMS-based mapping data in relation to 1) the ability of the nTMS-based mapping to stratify patients according to surgical risks, 2) the occurrence of postoperative language deficits, and 3) the EOR. RESULTS A total of 176 patients underwent preoperative nTMS cortical language mapping and nTMS-based tractography of language fascicles. According to the nTMS-based mapping, tumors in 115 patients (65.3%) were identified as true-eloquent tumors because of a close spatial relationship with the language network. Conversely, tumors in 61 patients (34.7%) for which the nTMS mapping disclosed a location at a safer distance from the network were identified as false-eloquent tumors. At 3 months postsurgery, a permanent language deficit was present in 13 patients (7.3%). In particular, a permanent deficit was observed in 12 of 115 patients (10.4%) with true-eloquent tumors and in 1 of 61 patients (1.6%) with false-eloquent lesions. With nTMS-based mapping, neurosurgeons were able to distinguish true-eloquent from false-eloquent tumors in a significant number of cases based on the occurrence of deficits at discharge (p < 0.0008) and after 3 months from surgery (OR 6.99, p = 0.03). Gross-total resection was achieved in 80.1% of patients overall and in 69.5% of patients with true-eloquent lesions and 100% of patients with false-eloquent tumors. CONCLUSIONS nTMS-based mapping allows for reliable preoperative mapping of the language network that may be used to stratify patients according to surgical risks. nTMS-guided asleep surgery should be considered a good alternative for personalized preoperative brain mapping of the language network that may increase the possibility of safe and effective resection of brain tumors in the dominant hemisphere whenever awake mapping is not feasible.
Collapse
Affiliation(s)
- Giovanni Raffa
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | - Giuseppina Marzano
- 2Division of Neurosurgery, A.O.U. Policlinico "G. Martino," Messina, Italy
| | - Antonello Curcio
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | | | - Antonino Germanò
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | | |
Collapse
|
6
|
Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes. Cancers (Basel) 2022; 14:cancers14225705. [PMID: 36428797 PMCID: PMC9688206 DOI: 10.3390/cancers14225705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Maximal safe resection is the mainstay of treatment in the neurosurgical management of gliomas, and preserving functional integrity is linked to favorable outcomes. How these modalities differ in their effectiveness on the extent of resection (EOR), survival, and complications remains unknown. A systematic literature search was performed with the following inclusion criteria: published between 2005 and 2022, involving brain glioma surgery, and including one or a combination of intraoperative modalities: intraoperative magnetic resonance imaging (iMRI), awake/general anesthesia craniotomy mapping (AC/GA), fluorescence-guided imaging, or combined modalities. Of 525 articles, 464 were excluded and 61 articles were included, involving 5221 glioma patients, 7(11.4%) articles used iMRI, 21(36.8%) used cortical mapping, 15(24.5%) used 5-aminolevulinic acid (5-ALA) or fluorescein sodium, and 18(29.5%) used combined modalities. The heterogeneity in reporting the amount of surgical resection prevented further analysis. Progression-free survival/overall survival (PFS/OS) were reported in 18/61(29.5%) articles, while complications and permanent disability were reported in 38/61(62.2%) articles. The reviewed studies demonstrate that intraoperative adjuncts such as iMRI, AC/GA mapping, fluorescence-guided imaging, and a combination of these modalities improve EOR. However, PFS/OS were underreported. Combining multiple intraoperative modalities seems to have the highest effect compared to each adjunct alone.
Collapse
|
7
|
What surgical approach for left-sided eloquent glioblastoma: biopsy, resection under general anesthesia or awake craniotomy? J Neurooncol 2022; 160:445-454. [DOI: 10.1007/s11060-022-04163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
8
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
9
|
Gerritsen JKW, Zwarthoed RH, Kilgallon JL, Nawabi NL, Jessurun CAC, Versyck G, Pruijn KP, Fisher FL, Larivière E, Solie L, Mekary RA, Satoer DD, Schouten JW, Bos EM, Kloet A, Nandoe Tewarie R, Smith TR, Dirven CMF, De Vleeschouwer S, Broekman MLD, Vincent AJPE. Effect of awake craniotomy in glioblastoma in eloquent areas (GLIOMAP): a propensity score-matched analysis of an international, multicentre, cohort study. Lancet Oncol 2022; 23:802-817. [DOI: 10.1016/s1470-2045(22)00213-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
|
10
|
Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Ohashi M, Fukui A, Kawamata T. Awake craniotomy with transcortical motor evoked potential monitoring for resection of gliomas within or close to motor-related areas: validation of utility for predicting motor function. J Neurosurg 2021; 136:1052-1061. [PMID: 34560661 DOI: 10.3171/2021.3.jns21374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors previously showed that combined evaluation of changes in intraoperative voluntary movement (IVM) during awake craniotomy and transcortical motor evoked potentials (MEPs) was useful for predicting postoperative motor function in 30 patients with precentral gyrus glioma. However, the validity of the previous report is limited to precentral gyrus gliomas. Therefore, the current study aimed to validate whether the combined findings of IVM during awake craniotomy and transcortical MEPs were useful for predicting postoperative motor function of patients with a glioma within or close to motor-related areas and not limited to the precentral gyrus. METHODS The authors included 95 patients with gliomas within or close to motor-related areas who were treated between April 2000 and May 2020. All tumors were resected with IVM monitoring during awake craniotomy and transcortical MEP monitoring. Postoperative motor function was classified into four categories: "no change" or "declined," the latter of which was further categorization as "mild," "moderate," or "severe." The authors defined moderate and severe deficits as those that impact daily life. RESULTS Motor function 6 months after surgery was classified as no change in 71 patients, mild in 18, moderate in 5, and severe in 1. Motor function at 6 months after surgery significantly correlated with IVM (p < 0.0001), transcortical MEPs (decline ≤ or > 50%) (p < 0.0001), age, preoperative motor dysfunction, extent of resection, and ischemic change on postoperative MRI. Thirty-two patients with no change in IVM showed no change in motor function at 6 months after surgery. Five of 34 patients (15%) with a decline in IVM and a decline in MEPs ≤ 50% had motor dysfunction with mild deficits 6 months after surgery. Furthermore, 19 of 23 patients (83%) with a decline in IVM and decline in MEPs > 50% had a decline in motor function, including 13 patients with mild, 5 with moderate, and 1 with severe deficits. Six patients with moderate or severe deficits had the lowest MEP values, at < 100 µV. CONCLUSIONS This study validated the utility of combined application of IVM during awake craniotomy and transcortical MEP monitoring to predict motor function at 6 months after surgery in patients with a glioma within or close to motor-related areas, not limited to the precentral gyrus. The authors also validated the usefulness of the cutoff value, 100 µV, in MEP monitoring.
Collapse
Affiliation(s)
- Taiichi Saito
- 1Department of Neurosurgery.,2Faculty of Advanced Techno-Surgery; and
| | | | | | - Takashi Maruyama
- 1Department of Neurosurgery.,2Faculty of Advanced Techno-Surgery; and
| | | | | | - Mana Ohashi
- 3Central Clinical Laboratory, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Feasibility, Safety and Impact on Overall Survival of Awake Resection for Newly Diagnosed Supratentorial IDH-Wildtype Glioblastomas in Adults. Cancers (Basel) 2021; 13:cancers13122911. [PMID: 34200799 PMCID: PMC8230499 DOI: 10.3390/cancers13122911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A few studies have suggested the benefits of awake surgery by maximizing the extent of resection while preserving neurological function and improving survival in high-grade glioma patients. However, the histomolecular heterogeneity in these series, mixing grade 3 with grade 4, and IDH-mutated with IDH-wildtype gliomas, represents a major selection bias that may influence survival analyses. For the first time, in a large homogeneous single-institution cohort of newly diagnosed supratentorial IDH-wildtype glioblastoma in adult patients, we assessed feasibility, safety and efficacy of awake surgery using univariate, multivariate and case-matched analysis. Awake surgery was associated with higher resection rates, lower residual tumor rates, and more supratotal resections than asleep resections, allowed standard radiochemotherapy to be performed systematically within a short time between surgery and radiotherapy, and was an independent predictor of progression-free survival and overall survival in the whole series, together with the extent of resection, MGMT promoter methylation status, and standard. Abstract Background: Although awake resection using intraoperative cortico-subcortical functional brain mapping is the benchmark technique for diffuse gliomas within eloquent brain areas, it is still rarely proposed for IDH-wildtype glioblastomas. We have assessed the feasibility, safety, and efficacy of awake resection for IDH-wildtype glioblastomas. Methods: Observational single-institution cohort (2012–2018) of 453 adult patients harboring supratentorial IDH-wildtype glioblastomas who benefited from awake resection, from asleep resection, or from a biopsy. Case matching (1:1) criteria between the awake group and asleep group: gender, age, RTOG-RPA class, tumor side, location and volume and neurosurgeon experience. Results: In patients in the awake resection subgroup (n = 42), supratotal resections were more frequent (21.4% vs. 3.1%, p < 0.0001) while partial resections were less frequent (21.4% vs. 40.1%, p < 0.0001) compared to the asleep (n = 222) resection subgroup. In multivariable analyses, postoperative standard radiochemistry (aHR = 0.04, p < 0.0001), supratotal resection (aHR = 0.27, p = 0.0021), total resection (aHR = 0.43, p < 0.0001), KPS score > 70 (HR = 0.66, p = 0.0013), MGMT promoter methylation (HR = 0.55, p = 0.0031), and awake surgery (HR = 0.54, p = 0.0156) were independent predictors of overall survival. After case matching, a longer overall survival was found for awake resection (HR = 0.47, p = 0.0103). Conclusions: Awake resection is safe, allows larger resections than asleep surgery, and positively impacts overall survival of IDH-wildtype glioblastoma in selected adult patients.
Collapse
|