1
|
Atsukawa N, Tatekawa H, Ueda D, Oura T, Matsushita S, Horiuchi D, Takita H, Mitsuyama Y, Baba R, Tsukamoto T, Shimono T, Miki Y. Visualizing the association between the location and prognosis of isocitrate dehydrogenase wild-type glioblastoma: a voxel-wise Cox regression analysis with open-source datasets. Neuroradiology 2025; 67:553-562. [PMID: 39542911 DOI: 10.1007/s00234-024-03503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study examined the correlation between tumor location and prognosis in patients with glioblastoma using magnetic resonance images of various isocitrate dehydrogenase (IDH) wild-type glioblastomas from The Cancer Imaging Archive (TCIA). The relationship between tumor location and prognosis was visualized using voxel-wise Cox regression analysis. METHODS Participants with IDH wild-type glioblastoma were selected, and their survival and demographic data and tumor characteristics were collected from TCIA datasets. Post-contrast-enhanced T1-weighted imaging, T2-fluid attenuated inversion recovery imaging, and tumor segmentation data were also compiled. Following affine registration of each image and tumor segmentation region of interest to the MNI standard space, a voxel-wise Cox regression analysis was conducted. This analysis determined the association of the presence or absence of the tumor with the prognosis in each voxel after adjusting for the covariates. RESULTS The study included 769 participants of 464 men and 305 women (mean age, 63 years ± 12 [standard deviation]). The hazard ratio map indicated that tumors in the medial frontobasal region and around the third and fourth ventricles were associated with poorer prognoses, underscoring the challenges of complete resection and treatment accessibility in these areas regardless of the tumor volume. Conversely, tumors located in the right temporal and occipital lobes had favorable prognoses. CONCLUSION This study showed an association between tumor location and prognosis. These findings may assist clinicians in developing more precise and effective treatment plans for patients with glioblastoma to improve their management.
Collapse
Affiliation(s)
- Natsuko Atsukawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Hiroyuki Tatekawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tatsushi Oura
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Shu Matsushita
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Daisuke Horiuchi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Hirotaka Takita
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Yasuhito Mitsuyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Reia Baba
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Taro Tsukamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Taro Shimono
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| |
Collapse
|
3
|
Hagiwara A, Tatekawa H, Yao J, Raymond C, Everson R, Patel K, Mareninov S, Yong WH, Salamon N, Pope WB, Nghiemphu PL, Liau LM, Cloughesy TF, Ellingson BM. Visualization of tumor heterogeneity and prediction of isocitrate dehydrogenase mutation status for human gliomas using multiparametric physiologic and metabolic MRI. Sci Rep 2022; 12:1078. [PMID: 35058510 PMCID: PMC8776874 DOI: 10.1038/s41598-022-05077-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to differentiate isocitrate dehydrogenase (IDH) mutation status with the voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and to discover biological underpinnings of the clusters. A total of 69 patients with treatment-naïve diffuse glioma were scanned with pH-sensitive amine chemical exchange saturation transfer MRI, diffusion-weighted imaging, fluid-attenuated inversion recovery, and contrast-enhanced T1-weighted imaging at 3 T. An unsupervised two-level clustering approach was used for feature extraction from acquired images. The logarithmic ratio of the labels in each class within tumor regions was applied to a support vector machine to differentiate IDH status. The highest performance to predict IDH mutation status was found for 10-class clustering, with a mean area under the curve, accuracy, sensitivity, and specificity of 0.94, 0.91, 0.90, and 0.91, respectively. Targeted biopsies revealed that the tissues with labels 7-10 showed high expression levels of hypoxia-inducible factor 1-alpha, glucose transporter 3, and hexokinase 2, which are typical of IDH wild-type glioma, whereas those with labels 1 showed low expression of these proteins. In conclusion, A machine learning model successfully predicted the IDH mutation status of gliomas, and the resulting clusters properly reflected the metabolic status of the tumors.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- grid.19006.3e0000 0000 9632 6718UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024 USA ,grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA ,grid.258269.20000 0004 1762 2738Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Tatekawa
- grid.19006.3e0000 0000 9632 6718UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024 USA ,grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA ,grid.261445.00000 0001 1009 6411Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Jingwen Yao
- grid.19006.3e0000 0000 9632 6718UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024 USA ,grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA USA
| | - Catalina Raymond
- grid.19006.3e0000 0000 9632 6718UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024 USA ,grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Richard Everson
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Kunal Patel
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Sergey Mareninov
- grid.19006.3e0000 0000 9632 6718Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - William H. Yong
- grid.19006.3e0000 0000 9632 6718Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Noriko Salamon
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Whitney B. Pope
- grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Phioanh L. Nghiemphu
- grid.19006.3e0000 0000 9632 6718UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Linda M. Liau
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Timothy F. Cloughesy
- grid.19006.3e0000 0000 9632 6718UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Benjamin M. Ellingson
- grid.19006.3e0000 0000 9632 6718UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024 USA ,grid.19006.3e0000 0000 9632 6718Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|