1
|
Breen WG, Palmer JD, Johnson DR, Kim MM. The Role of PET/CT in Radiation Oncology for Central Nervous System Tumors. PET Clin 2025; 20:195-204. [PMID: 39915188 DOI: 10.1016/j.cpet.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The investigation and application of PET modalities for the evaluation and treatment of patients with central nervous system (CNS) tumors continues to evolve, with anticipated increased uptake in the United States for both benign and malignant CNS tumors in the decade to come.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Sipos D, Debreczeni-Máté Z, Ritter Z, Freihat O, Simon M, Kovács Á. Complex Diagnostic Challenges in Glioblastoma: The Role of 18F-FDOPA PET Imaging. Pharmaceuticals (Basel) 2024; 17:1215. [PMID: 39338377 PMCID: PMC11434841 DOI: 10.3390/ph17091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid proliferation and diffuse infiltration into the surrounding brain tissues. Despite advancements in therapeutic approaches, the prognosis for GBM patients is poor, with median survival times rarely exceeding 15 months post-diagnosis. An accurate diagnosis, treatment planning, and monitoring are crucial for improving patient outcomes. Core imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are indispensable in the initial diagnosis and ongoing management of GBM. Histopathology remains the gold standard for definitive diagnoses, guiding treatment by providing molecular and genetic insights into the tumor. Advanced imaging modalities, particularly positron emission tomography (PET), play a pivotal role in the management of GBM. Among these, 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA) PET has emerged as a powerful tool due to its superior specificity and sensitivity in detecting GBM and monitoring treatment responses. This introduction provides a comprehensive overview of the multifaceted role of 18F-FDOPA PET in GBM, covering its diagnostic accuracy, potential as a biomarker, integration into clinical workflows, impact on patient outcomes, technological and methodological advancements, comparative effectiveness with other PET tracers, and its cost-effectiveness in clinical practice. Through these perspectives, we aim to underscore the significant contributions of 18F-FDOPA PET to the evolving landscape of GBM management and its potential to enhance both clinical and economic outcomes for patients afflicted with this formidable disease.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Zsanett Debreczeni-Máté
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Zsombor Ritter
- Department of Medical Imaging, Medical School, University of Pécs, 7621 Pécs, Hungary
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Chen ATC, Serante AR, Ayres AS, Tonaki JO, Moreno RA, Shih H, Gattás GS, Lopez RVM, Dos Santos de Jesus GR, de Carvalho IT, Marotta RC, Marta GN, Feher O, Neto HS, Ribeiro ISN, Vasconcelos KGMDC, Figueiredo EG, Weltman E. Prospective Randomized Phase 2 Trial of Hypofractionated Stereotactic Radiation Therapy of 25 Gy in 5 Fractions Compared With 35 Gy in 5 Fractions in the Reirradiation of Recurrent Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 119:1122-1132. [PMID: 38232937 DOI: 10.1016/j.ijrobp.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE The aim of this work was to investigate whether reirradiation of recurrent glioblastoma with hypofractionated stereotactic radiation therapy (HSRT) consisting of 35 Gy in 5 fractions (35 Gy/5 fx) compared with 25 Gy in 5 fractions (25 Gy/5 fx) improves outcomes while maintaining acceptable toxicity. METHODS AND MATERIALS We conducted a prospective randomized phase 2 trial involving patients with recurrent glioblastoma (per the 2007 and 2016 World Health Organization classification). A minimum interval from first radiation therapy of 5 months and gross tumor volume of 150 cc were required. Patients were randomized 1:1 to receive HSRT alone in 25 Gy/5 fx or 35 Gy/5 fx. The primary endpoint was progression-free survival (PFS). We used a randomized phase 2 screening design with a 2-sided α of 0.15 for the primary endpoint. RESULTS From 2011 to 2019, 40 patients were randomized and received HSRT, with 20 patients in each group. The median age was 50 years (range, 27-71); a new resection before HSRT was performed in 75% of patients. The median PFS was 4.9 months in the 25 Gy/5 fx group and 5.2 months in the 35 Gy/5 fx group (P = .23). Six-month PFS was similar at 40% (85% CI, 24%-55%) for both groups. The median overall survival (OS) was 9.2 months in the 25 Gy/5 fx group and 10 months in the 35 Gy/5 fx group (P = .201). Grade ≥3 necrosis was numerically higher in the 35 Gy/5 fx group (3 [16%] vs 1 [5%]), but the difference was not statistically significant (P = .267). In an exploratory analysis, median OS of patients who developed treatment-related necrosis was 14.1 months, and that of patients who did not was 8.7 months (P = .003). CONCLUSIONS HSRT alone with 35 Gy/5 fx was not superior to 25 Gy/5 fx in terms of PFS or OS. Due to a potential increase in the rate of clinically meaningful treatment-related necrosis, we suggest 25 Gy/5 fx as the standard dose in HSRT alone. During follow-up, attention should be given to differentiating tumor progression from potentially manageable complications.
Collapse
Affiliation(s)
- Andre Tsin Chih Chen
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.
| | - Alexandre Ruggieri Serante
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Aline Sgnolf Ayres
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Juliana Ono Tonaki
- Division of Psychology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Raquel Andrade Moreno
- Department of Radiology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Helen Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rossana Veronica Mendoza Lopez
- Oncology Translational Research Center, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Gabriela Reis Dos Santos de Jesus
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Icaro Thiago de Carvalho
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rodrigo Carvalho Marotta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Gustavo Nader Marta
- Department of Radiation Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Olavo Feher
- Department of Clinical Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Hugo Sterman Neto
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | - Iuri Santana Neville Ribeiro
- Department of Neurosurgery, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da FMUSP, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
4
|
Wu X, Chen W, Deng H, Wang L, Nicewicz DA, Li Z, Wu Z. Manufacturing 6-[ 18F]Fluoro- L-DOPA via Flow Chemistry-Enhanced Photoredox Radiofluorination. Org Lett 2024; 26:4308-4313. [PMID: 38728659 DOI: 10.1021/acs.orglett.4c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, we introduce a practical methodology for the synthesis of PET probes by seamlessly combining flow chemistry with photoredox radiofluorination. The clinical PET tracer 6-[18F]FDOPA was smoothly prepared in a 24.3% non-decay-corrected yield with over 99.0% radiochemical purity (RCP) and enantiomeric excess (ee), notably by a simple cartridge-based purification. The flow chemistry-enhanced photolabeling method supplies an efficient and versatile solution for the synthesis of 6-[18F]FDOPA and for more PET tracer development.
Collapse
Affiliation(s)
- Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
- LED Radiofluidics Corp., 250 Bell Tower Drive, Genome Science Building, Chapel Hill, North Carolina 27599, United States
| | - Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Li Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina-Chapel Hill, 125 South Road, Chapel Hill, North Carolina 27514, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 125 Mason Farm Road, Marsico Hall, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Cuccia F, Jafari F, D’Alessandro S, Carruba G, Craparo G, Tringali G, Blasi L, Ferrera G. Preferred Imaging for Target Volume Delineation for Radiotherapy of Recurrent Glioblastoma: A Literature Review of the Available Evidence. J Pers Med 2024; 14:538. [PMID: 38793120 PMCID: PMC11122491 DOI: 10.3390/jpm14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recurrence in glioblastoma lacks a standardized treatment, prompting an exploration of re-irradiation's efficacy. METHODS A comprehensive systematic review from January 2005 to May 2023 assessed the role of MRI sequences in recurrent glioblastoma re-irradiation. The search criteria, employing MeSH terms, targeted English-language, peer-reviewed articles. The inclusion criteria comprised both retrospective and prospective studies, excluding certain types and populations for specificity. The PICO methodology guided data extraction, and the statistical analysis employed Chi-squared tests via MedCalc v22.009. RESULTS Out of the 355 identified studies, 81 met the criteria, involving 3280 patients across 65 retrospective and 16 prospective studies. The key findings indicate diverse treatment modalities, with linac-based photons predominating. The median age at re-irradiation was 54 years, and the median time interval between radiation courses was 15.5 months. Contrast-enhanced T1-weighted sequences were favored for target delineation, with PET-imaging used in fewer studies. Re-irradiation was generally well tolerated (median G3 adverse events: 3.5%). The clinical outcomes varied, with a median 1-year local control rate of 61% and a median overall survival of 11 months. No significant differences were noted in the G3 toxicity and clinical outcomes based on the MRI sequence preference or PET-based delineation. CONCLUSIONS In the setting of recurrent glioblastoma, contrast-enhanced T1-weighted sequences were preferred for target delineation, allowing clinicians to deliver a safe and effective therapeutic option; amino acid PET imaging may represent a useful device to discriminate radionecrosis from recurrent disease. Future investigations, including the ongoing GLIAA, NOA-10, ARO 2013/1 trial, will aim to refine approaches and standardize methodologies for improved outcomes in recurrent glioblastoma re-irradiation.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| | - Fatemeh Jafari
- Radiation Oncology Department, Imam-Khomeini Hospital Complex, Teheran University of Medical Sciences, Teheran 1416634793, Iran
| | | | - Giuseppe Carruba
- Division of Internationalization and Health Research (SIRS), ARNAS Civico Hospital, 90100 Palermo, Italy
| | | | | | - Livio Blasi
- Medical Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy;
| | - Giuseppe Ferrera
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| |
Collapse
|
6
|
Frosina G. Advancements in Image-Based Models for High-Grade Gliomas Might Be Accelerated. Cancers (Basel) 2024; 16:1566. [PMID: 38672647 PMCID: PMC11048778 DOI: 10.3390/cancers16081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The first half of 2022 saw the publication of several major research advances in image-based models and artificial intelligence applications to optimize treatment strategies for high-grade gliomas, the deadliest brain tumors. We review them and discuss the barriers that delay their entry into clinical practice; particularly, the small sample size and the heterogeneity of the study designs and methodologies used. We will also write about the poor and late palliation that patients suffering from high-grade glioma can count on at the end of life, as well as the current legislative instruments, with particular reference to Italy. We suggest measures to accelerate the gradual progress in image-based models and end of life care for patients with high-grade glioma.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
7
|
Tseng CL, Zeng KL, Mellon EA, Soltys SG, Ruschin M, Lau AZ, Lutsik NS, Chan RW, Detsky J, Stewart J, Maralani PJ, Sahgal A. Evolving concepts in margin strategies and adaptive radiotherapy for glioblastoma: A new future is on the horizon. Neuro Oncol 2024; 26:S3-S16. [PMID: 38437669 PMCID: PMC10911794 DOI: 10.1093/neuonc/noad258] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - K Liang Zeng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Simcoe Muskoka Regional Cancer Program, Royal Victoria Regional Health Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Natalia S Lutsik
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rachel W Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Breen WG, Aryal MP, Cao Y, Kim MM. Integrating multi-modal imaging in radiation treatments for glioblastoma. Neuro Oncol 2024; 26:S17-S25. [PMID: 38437666 PMCID: PMC10911793 DOI: 10.1093/neuonc/noad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Advances in diagnostic and treatment technology along with rapid developments in translational research may now allow the realization of precision radiotherapy. Integration of biologically informed multimodality imaging to address the spatial and temporal heterogeneity underlying treatment resistance in glioblastoma is now possible for patient care, with evidence of safety and potential benefit. Beyond their diagnostic utility, several candidate imaging biomarkers have emerged in recent early-phase clinical trials of biologically based radiotherapy, and their definitive assessment in multicenter prospective trials is already in development. In this review, the rationale for clinical implementation of candidate advanced magnetic resonance imaging and positron emission tomography imaging biomarkers to guide personalized radiotherapy, the current landscape, and future directions for integrating imaging biomarkers into radiotherapy for glioblastoma are summarized. Moving forward, response-adaptive radiotherapy using biologically informed imaging biomarkers to address emerging treatment resistance in rational combination with novel systemic therapies may ultimately permit improvements in glioblastoma outcomes and true individualization of patient care.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhava P Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Pichler J, Traub-Weidinger T, Spiegl K, Imamovic L, Braat AJAT, Snijders TJ, Verhoeff JJC, Flamen P, Tauchmanova L, Hayward C, Kluge A. Results from a phase I study of 4- l-[131I]iodo-phenylalanine ([ 131I]IPA) with external radiation therapy in patients with recurrent glioblastoma (IPAX-1). Neurooncol Adv 2024; 6:vdae130. [PMID: 39211520 PMCID: PMC11358817 DOI: 10.1093/noajnl/vdae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Glioblastoma (GBM), the most common malignant brain tumor, is associated with devastating outcomes. IPAX-1 was a multicenter, open-label, single-arm phase I study to evaluate carrier-added 4-L-[131I]iodo-phenylalanine ([131I]IPA) plus external radiation therapy (XRT) in recurrent GBM. Methods A total of 10 adults with recurrent GBM who had received first-line debulking surgery plus radio-chemotherapy, were randomized to a single-dose regimen (1f; 131I-IPA 2 GBq before XRT); a fractionated parallel dose regimen (3f-p; 3 131I-IPA 670 MBq fractions, in parallel with second-line XRT), or a fractionated sequential dose regimen (3f-s; 3 131I-IPA 670 MBq fractions before and after XRT). Metabolic tumor responses were determined using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography, while single-photon emission computed tomography was used to guide [131I]IPA tumor dosimetry. Results All dose regimens were well tolerated. Organ-absorbed radiation doses in red marrow (0.38 Gy) and kidney (1.28 Gy) confirmed no radiation-based toxicity. Stable disease was observed in 4 of the 9 patients at 3 months post-treatment (3-month follow-up [FU], 1 patient did not reach protocol-mandated end of study), yielding a response rate of 44.4%. At the 3-month FU, 6 patients demonstrated metabolic stable disease. Median progression-free survival was 4.3 months (95% confidence interval [CI]: 3.3-4.5), while median overall survival was 13 months (95% CI: 7.1-27). Conclusions Single or fractionated doses of [131I]IPA plus XRT were associated with acceptable tolerability and specific tumor targeting in patients with recurrent GBM, warranting further investigation.
Collapse
Affiliation(s)
- Josef Pichler
- Department of Internal Medicine and Neuro-oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kurt Spiegl
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Larisa Imamovic
- Department of Nuclear Medicine, Ordensklinikum Linz Barmherzige Schwestern, Linz, Austria
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom J Snijders
- Department of Neurology, University Medical Center Utrecht, Brain Center, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Colin Hayward
- TelixPharmaceuticals, North Melbourne, VIC, Australia
| | - Andreas Kluge
- ABX - CRO Advanced Pharmaceutical Services Forschungsgesellschaft, Dresden, Germany
| |
Collapse
|
10
|
Islam S, Inglese M, Grech-Sollars M, Aravind P, Dubash S, Barwick TD, O'Neill K, Wang J, Saleem A, O'Callaghan J, Anchini G, Williams M, Waldman A, Aboagye EO. Feasibility of [ 18F]fluoropivalate hybrid PET/MRI for imaging lower and higher grade glioma: a prospective first-in-patient pilot study. Eur J Nucl Med Mol Imaging 2023; 50:3982-3995. [PMID: 37490079 PMCID: PMC10611885 DOI: 10.1007/s00259-023-06330-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE MRI and PET are used in neuro-oncology for the detection and characterisation of lesions for malignancy to target surgical biopsy and to plan surgical resections or stereotactic radiosurgery. The critical role of short-chain fatty acids (SCFAs) in brain tumour biology has come to the forefront. The non-metabolised SCFA radiotracer, [18F]fluoropivalate (FPIA), shows low background signal in most tissues except eliminating organs and has appropriate human dosimetry. Tumour uptake of the radiotracer is, however, unknown. We investigated the uptake characteristics of FPIA in this pilot PET/MRI study. METHODS Ten adult glioma subjects were identified based on radiological features using standard-of-care MRI prior to any surgical intervention, with subsequent histopathological confirmation of glioma subtype and grade (lower-grade - LGG - and higher-grade - HGG - patients). FPIA was injected as an intravenous bolus injection (range 342-368 MBq), and dynamic PET and MRI data were acquired simultaneously over 66 min. RESULTS All patients tolerated the PET/MRI protocol. Three patients were reclassified following resection and histology. Tumour maximum standardised uptake value (SUVmax,60) increased in the order LGG (WHO grade 2) < HGG (WHO grade 3) < HGG (WHO grade 4). The net irreversible solute transfer, Ki, and influx rate constant, K1, were significantly higher in HGG (p < 0.05). Of the MRI variables studied, DCE-MRI-derived extravascular-and-extracellular volume fraction (ve) was high in tumours of WHO grade 4 compared with other grades (p < 0.05). SLC25A20 protein expression was higher in HGG compared with LGG. CONCLUSION Tumoural FPIA PET uptake is higher in HGG compared to LGG. This study supports further investigation of FPIA PET/MRI for brain tumour imaging in a larger patient population. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, NCT04097535.
Collapse
Affiliation(s)
- Shahriar Islam
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Marianna Inglese
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew Grech-Sollars
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Preetha Aravind
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Suraiya Dubash
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Tara D Barwick
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Kevin O'Neill
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James Wang
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Azeem Saleem
- Invicro Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - James O'Callaghan
- Invicro Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Giulio Anchini
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew Williams
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Adam Waldman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|