1
|
Schwartz AV, Chao G, Robinson M, Conley BM, Ahmed Adam MA, Wells GA, Hoang A, Albekioni E, Gallo C, Weeks J, Yunker K, Quichocho G, George UZ, Niesman I, House CD, Turcan Ş, Sohl CD. Catalytically distinct metabolic enzyme isocitrate dehydrogenase 1 mutants tune phenotype severity in tumor models. J Biol Chem 2025; 301:108477. [PMID: 40188944 DOI: 10.1016/j.jbc.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to IDH1 R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis and are associated with distinct epigenetic and transcriptomic consequences, with higher D2HG levels appearing to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brittany M Conley
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Katelyn Yunker
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Computational Science Research Center, San Diego State University, San Diego, California, USA; Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Ingrid Niesman
- Electron Microscope Facility, San Diego State University, San Diego, California, USA
| | - Carrie D House
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA.
| |
Collapse
|
2
|
Roth P, Capper D, Calabrese E, Halasz LM, Jakola AS. Role of the tumor board when prescribing mutant isocitrate dehydrogenase inhibitors to patients with isocitrate dehydrogenase-mutant glioma. Neurooncol Pract 2025; 12:i29-i37. [PMID: 39776528 PMCID: PMC11703365 DOI: 10.1093/nop/npae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas, comprising both astrocytomas and oligodendrogliomas, represent a distinct group of tumors that pose an interdisciplinary challenge. Addressing the needs of affected patients requires close collaboration among various disciplines, including neuropathology, neuroradiology, neurosurgery, radiation oncology, neurology, medical oncology, and other relevant specialties when necessary. Interdisciplinary tumor boards are central in determining the ideal diagnostic and therapeutic strategies for these patients. The key tasks of a tumor board include the evaluation of imaging findings, selecting the appropriate surgical approach, discussing additional treatment options, and identification/determination of tumor recurrence and progression. In addition to established treatments such as radiotherapy and alkylating chemotherapy, patients with an isocitrate dehydrogenase (IDH)-mutant glioma for whom additional treatment is indicated may now also have the option of receiving treatment with an mutant isocitrate dehydrogenase inhibitor such as vorasidenib or ivosidenib. In this regard, the collaborative nature of tumor boards becomes even more crucial for evaluating comprehensively the needs of these patients. Through interdisciplinary discussions, tumor boards aim to develop personalized treatment strategies that maximize therapeutic efficacy while minimizing potential side effects and preserving patients' quality of life.
Collapse
Affiliation(s)
- Patrick Roth
- University of Zurich, Zurich, Switzerland
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Evan Calabrese
- Department of Radiology, Division of Neuroradiology, Duke University Medical Center, Durham, North Carolina
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington
| | - Asgeir S Jakola
- Institute of Neuroscience and Physiology, Section of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Darlix A, Preusser M, Hervey-Jumper SL, Shih HA, Mandonnet E, Taylor JW. Who will benefit from vorasidenib? Review of data from the literature and open questions. Neurooncol Pract 2025; 12:i6-i18. [PMID: 39776530 PMCID: PMC11703370 DOI: 10.1093/nop/npae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The clinical efficacy of isocitrate dehydrogenase (IDH) inhibitors in the treatment of patients with grade 2 IDH-mutant (mIDH) gliomas is a significant therapeutic advancement in neuro-oncology. It expands treatment options beyond traditional radiation therapy and cytotoxic chemotherapy, which may lead to significant long-term neurotoxic effects while extending patient survival. The INDIGO study demonstrated that vorasidenib, a pan-mIDH inhibitor, improved progression-free survival for patients with grade 2 mIDH gliomas following surgical resection or biopsy compared to placebo and was well tolerated. However, these encouraging results leave a wake of unanswered questions: Will higher-grade mIDH glioma patients benefit? When is the appropriate timing to start and stop treatment? Where does this new treatment option fit in with other treatment modalities? In this study, we review the limited data available to start addressing these questions, provide a framework of how to discuss these gaps with current patients, and highlight what is needed from the neuro-oncology community for more definitive answers.
Collapse
Affiliation(s)
- Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco and Weill Institute for Neurosciences, San Francisco, California, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco and Weill Institute for Neurosciences, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Autry AW, Vaziri S, Gordon JW, Chen HY, Kim Y, Dang D, LaFontaine M, Noeske R, Bok R, Villanueva-Meyer JE, Clarke JL, Oberheim Bush NA, Chang SM, Xu D, Lupo JM, Larson PEZ, Vigneron DB, Li Y. Advanced Hyperpolarized 13C Metabolic Imaging Protocol for Patients with Gliomas: A Comprehensive Multimodal MRI Approach. Cancers (Basel) 2024; 16:354. [PMID: 38254844 PMCID: PMC10814348 DOI: 10.3390/cancers16020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to implement a multimodal 1H/HP-13C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-13C metabolic data. A total of 100 1H/HP [1-13C]-pyruvate MR examinations (104 HP-13C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient. Serial atlas-based HP-13C MRI demonstrated consistency in volumetric coverage measured by inter-exam dice coefficients (0.977 ± 0.008, mean ± SD; four patients/11 exams). The atlas-derived prescription provided significantly improved data quality compared to manually prescribed acquisitions (n = 26/78; p = 0.04). The water-based method for referencing [1-13C]-pyruvate center frequency significantly reduced off-resonance excitation relative to the coil-embedded [13C]-urea phantom (4.1 ± 3.7 Hz vs. 9.9 ± 10.7 Hz; p = 0.0007). Significantly improved capture of tracer inflow was achieved with the 2-s versus 5-s HP-13C MRI acquisition delay (p = 0.007). This study demonstrated the implementation of a comprehensive multimodal 1H/HP-13C MR protocol emphasizing the monitoring of steady-state/dynamic metabolism in patients with glioma.
Collapse
Affiliation(s)
- Adam W. Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Duy Dang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jennifer L. Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Chung BT, Kim Y, Gordon JW, Chen HY, Autry AW, Lee PM, Hu JY, Tan CT, Suszczynski C, Chang SM, Villanueva-Meyer JE, Bok RA, Larson PEZ, Xu D, Li Y, Vigneron DB. Hyperpolarized [2- 13C]pyruvate MR molecular imaging with whole brain coverage. Neuroimage 2023; 280:120350. [PMID: 37634883 PMCID: PMC10530049 DOI: 10.1016/j.neuroimage.2023.120350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hyperpolarized (HP) 13C Magnetic Resonance Imaging (MRI) was applied for the first time to image and quantify the uptake and metabolism of [2-13C]pyruvate in the human brain to provide new metabolic information on cerebral energy metabolism. HP [2-13C]pyruvate was injected intravenously and imaged in 5 healthy human volunteer exams with whole brain coverage in a 1-minute acquisition using a specialized spectral-spatial multi-slice echoplanar imaging (EPI) pulse sequence to acquire 13C-labeled volumetric and dynamic images of [2-13C]pyruvate and downstream metabolites [5-13C]glutamate and [2-13C]lactate. Metabolic ratios and apparent conversion rates of pyruvate-to-lactate (kPL) and pyruvate-to-glutamate (kPG) were quantified to investigate simultaneously glycolytic and oxidative metabolism in a single injection.
Collapse
Affiliation(s)
- Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA.
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Philip M Lee
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Chou T Tan
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Chris Suszczynski
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Prognostic Value of Choline and Other Metabolites Measured Using 1H-Magnetic Resonance Spectroscopy in Gliomas: A Meta-Analysis and Systemic Review. Metabolites 2022; 12:metabo12121219. [PMID: 36557257 PMCID: PMC9788620 DOI: 10.3390/metabo12121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most prevalent primary central nervous system malignant tumor, with high heterogeneity observed among different grades; therefore, non-invasive prediction of prognosis could improve the clinical management of patients with glioma. 1H-magnetic resonance spectroscopy (MRS) can estimate metabolite levels non-invasively. Multiple studies have investigated its prognostic value in gliomas; however, no consensus has been reached. PubMed and Embase databases were searched up to 20 October 2022 to identify studies investigating the prognostic value of metabolites using 1H-MRS in patients with glioma. Heterogeneity across studies was evaluated using the Q and I2 tests, and a fixed- or random-effects model was used to estimate the combined overall hazard ratio (HR). Funnel plots and Begg tests were used to assess publication bias. Higher choline levels were associated with shorter overall survival (HR = 2.69, 95% CI, 1.92−2.99; p < 0.001) and progression-free survival (HR = 2.20, 95% CI, 1.16−4.17; p = 0.02) in all patients; however, in pediatric gliomas, it showed no significant correlation with overall survival (HR = 1.60, 95% CI, 0.97−2.64; p = 0.06). The estimated choline level by 1H-MRS could be used to non-invasively predict the prognosis of patients with adult gliomas, and more studies are needed to evaluate the prognostic value of other metabolites.
Collapse
|
7
|
Avalos LN, Luks TL, Gleason T, Damasceno P, Li Y, Lupo JM, Phillips J, Oberheim Bush NA, Taylor JW, Chang SM, Villanueva-Meyer JE. Longitudinal MR spectroscopy to detect progression in patients with lower-grade glioma in the surveillance phase. Neurooncol Adv 2022; 4:vdac175. [PMID: 36479058 PMCID: PMC9721386 DOI: 10.1093/noajnl/vdac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Monitoring lower-grade gliomas (LrGGs) for disease progression is made difficult by the limits of anatomical MRI to distinguish treatment related tissue changes from tumor progression. MR spectroscopic imaging (MRSI) offers additional metabolic information that can help address these challenges. The goal of this study was to compare longitudinal changes in multiparametric MRI, including diffusion weighted imaging, perfusion imaging, and 3D MRSI, for LrGG patients who progressed at the final time-point and those who remained clinically stable. Methods Forty-one patients with LrGG who were clinically stable were longitudinally assessed for progression. Changes in anatomical, diffusion, perfusion and MRSI data were acquired and compared between patients who remained clinically stable and those who progressed. Results Thirty-one patients remained stable, and 10 patients progressed. Over the study period, progressed patients had a significantly greater increase in normalized choline, choline-to-N-acetylaspartic acid index (CNI), normalized creatine, and creatine-to-N-acetylaspartic acid index (CRNI), than stable patients. CRNI was significantly associated with progression status and WHO type. Progressed astrocytoma patients had greater increases in CRNI than stable astrocytoma patients. Conclusions LrGG patients in surveillance with tumors that progressed had significantly increasing choline and creatine metabolite signals on MRSI, with a trend of increasing T2 FLAIR volumes, compared to LrGG patients who remained stable. These data show that MRSI can be used in conjunction with anatomical imaging studies to gain a clearer picture of LrGG progression, especially in the setting of clinical ambiguity.
Collapse
Affiliation(s)
- Lauro N Avalos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Tracy L Luks
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Tyler Gleason
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Pablo Damasceno
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Joanna Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA,Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Javier E Villanueva-Meyer
- Corresponding Author: Javier Villanueva-Meyer, MD, Department of Radiology and Biomedical Imaging, Box 0628, Floor P1, Room C-09H, San Francisco, CA 94143-0628, USA ()
| |
Collapse
|