1
|
Rysop AU, Williams KA, Schmitt LM, Meinzer M, Obleser J, Hartwigsen G. Aging modulates large-scale neural network interactions during speech comprehension. Neurobiol Aging 2025; 150:109-121. [PMID: 40088622 DOI: 10.1016/j.neurobiolaging.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming words (i.e., predictability gain)-a process associated with the domain-specific semantic network. When no such context can be used, speech comprehension in challenging listening conditions relies on cognitive control functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre-selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific and domain-general networks interact during speech comprehension in noise and how this may change across the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network interactions during sentence comprehension under noisy conditions with varying predictability in healthy young and older listeners. Relative to young listeners, older adults showed increased task-related activity in several domain-general networks but reduced between-network connectivity. Across groups, higher predictability was associated with increased positive coupling between semantic and attention networks and increased negative coupling between semantic and control networks. These results highlight the complex interplay between the semantic network and several domain-general networks underlying the predictability gain. The observed differences in connectivity profiles with age inform the current debate on whether age-related changes in neural activity and functional connectivity reflect compensation or dedifferentiation.
Collapse
Affiliation(s)
- Anna Uta Rysop
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany; Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany.
| | - Kathleen Anne Williams
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| | - Lea-Maria Schmitt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, Nijmegen 6525 EN, the Netherlands
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
2
|
Brisson V, Tremblay P. Assessing the Impact of Transcranial Magnetic Stimulation on Speech Perception in Noise. J Cogn Neurosci 2024; 36:2184-2207. [PMID: 39023366 DOI: 10.1162/jocn_a_02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Healthy aging is associated with reduced speech perception in noise (SPiN) abilities. The etiology of these difficulties remains elusive, which prevents the development of new strategies to optimize the speech processing network and reduce these difficulties. The objective of this study was to determine if sublexical SPiN performance can be enhanced by applying TMS to three regions involved in processing speech: the left posterior temporal sulcus, the left superior temporal gyrus, and the left ventral premotor cortex. The second objective was to assess the impact of several factors (age, baseline performance, target, brain structure, and activity) on post-TMS SPiN improvement. The results revealed that participants with lower baseline performance were more likely to improve. Moreover, in older adults, cortical thickness within the target areas was negatively associated with performance improvement, whereas this association was null in younger individuals. No differences between the targets were found. This study suggests that TMS can modulate sublexical SPiN performance, but that the strength and direction of the effects depend on a complex combination of contextual and individual factors.
Collapse
Affiliation(s)
- Valérie Brisson
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| |
Collapse
|
3
|
Yang L, Wang S, Chen Y, Liang Y, Chen T, Wang Y, Fu X, Wang S. Effects of Age on the Auditory Cortex During Speech Perception in Noise: Evidence From Functional Near-Infrared Spectroscopy. Ear Hear 2024; 45:742-752. [PMID: 38268081 PMCID: PMC11008455 DOI: 10.1097/aud.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang S, Chen Y, Liu Y, Yang L, Wang Y, Fu X, Hu J, Pugh E, Wang S. Aging effects on dual-route speech processing networks during speech perception in noise. Hum Brain Mapp 2024; 45:e26577. [PMID: 38224542 PMCID: PMC10789214 DOI: 10.1002/hbm.26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.
Collapse
Affiliation(s)
- Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Jiong Hu
- Department of AudiologyUniversity of the PacificSan FranciscoCaliforniaUSA
| | | | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
6
|
Amateur singing benefits speech perception in aging under certain conditions of practice: behavioural and neurobiological mechanisms. Brain Struct Funct 2022; 227:943-962. [PMID: 35013775 DOI: 10.1007/s00429-021-02433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Limited evidence has shown that practising musical activities in aging, such as choral singing, could lessen age-related speech perception in noise (SPiN) difficulties. However, the robustness and underlying mechanism of action of this phenomenon remain unclear. In this study, we used surface-based morphometry combined with a moderated mediation analytic approach to examine whether singing-related plasticity in auditory and dorsal speech stream regions is associated with better SPiN capabilities. 36 choral singers and 36 non-singers aged 20-87 years underwent cognitive, auditory, and SPiN assessments. Our results provide important new insights into experience-dependent plasticity by revealing that, under certain conditions of practice, amateur choral singing is associated with age-dependent structural plasticity within auditory and dorsal speech regions, which is associated with better SPiN performance in aging. Specifically, the conditions of practice that were associated with benefits on SPiN included frequent weekly practice at home, several hours of weekly group singing practice, singing in multiple languages, and having received formal singing training. These results suggest that amateur choral singing is associated with improved SPiN through a dual mechanism involving auditory processing and auditory-motor integration and may be dose dependent, with more intense singing associated with greater benefit. Our results, thus, reveal that the relationship between singing practice and SPiN is complex, and underscore the importance of considering singing practice behaviours in understanding the effects of musical activities on the brain-behaviour relationship.
Collapse
|
7
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
8
|
Perron M, Theaud G, Descoteaux M, Tremblay P. The frontotemporal organization of the arcuate fasciculus and its relationship with speech perception in young and older amateur singers and non-singers. Hum Brain Mapp 2021; 42:3058-3076. [PMID: 33835629 PMCID: PMC8193549 DOI: 10.1002/hbm.25416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to perceive speech in noise (SPiN) declines with age. Although the etiology of SPiN decline is not well understood, accumulating evidence suggests a role for the dorsal speech stream. While age-related decline within the dorsal speech stream would negatively affect SPiN performance, experience-induced neuroplastic changes within the dorsal speech stream could positively affect SPiN performance. Here, we investigated the relationship between SPiN performance and the structure of the arcuate fasciculus (AF), which forms the white matter scaffolding of the dorsal speech stream, in aging singers and non-singers. Forty-three non-singers and 41 singers aged 20 to 87 years old completed a hearing evaluation and a magnetic resonance imaging session that included High Angular Resolution Diffusion Imaging. The groups were matched for sex, age, education, handedness, cognitive level, and musical instrument experience. A subgroup of participants completed syllable discrimination in the noise task. The AF was divided into 10 segments to explore potential local specializations for SPiN. The results show that, in carefully matched groups of singers and non-singers (a) myelin and/or axonal membrane deterioration within the bilateral frontotemporal AF segments are associated with SPiN difficulties in aging singers and non-singers; (b) the structure of the AF is different in singers and non-singers; (c) these differences are not associated with a benefit on SPiN performance for singers. This study clarifies the etiology of SPiN difficulties by supporting the hypothesis for the role of aging of the dorsal speech stream.
Collapse
Affiliation(s)
- Maxime Perron
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| |
Collapse
|
9
|
Tremblay P, Brisson V, Deschamps I. Brain aging and speech perception: Effects of background noise and talker variability. Neuroimage 2020; 227:117675. [PMID: 33359849 DOI: 10.1016/j.neuroimage.2020.117675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Speech perception can be challenging, especially for older adults. Despite the importance of speech perception in social interactions, the mechanisms underlying these difficulties remain unclear and treatment options are scarce. While several studies have suggested that decline within cortical auditory regions may be a hallmark of these difficulties, a growing number of studies have reported decline in regions beyond the auditory processing network, including regions involved in speech processing and executive control, suggesting a potentially diffuse underlying neural disruption, though no consensus exists regarding underlying dysfunctions. To address this issue, we conducted two experiments in which we investigated age differences in speech perception when background noise and talker variability are manipulated, two factors known to be detrimental to speech perception. In Experiment 1, we examined the relationship between speech perception, hearing and auditory attention in 88 healthy participants aged 19 to 87 years. In Experiment 2, we examined cortical thickness and BOLD signal using magnetic resonance imaging (MRI) and related these measures to speech perception performance using a simple mediation approach in 32 participants from Experiment 1. Our results show that, even after accounting for hearing thresholds and two measures of auditory attention, speech perception significantly declined with age. Age-related decline in speech perception in noise was associated with thinner cortex in auditory and speech processing regions (including the superior temporal cortex, ventral premotor cortex and inferior frontal gyrus) as well as in regions involved in executive control (including the dorsal anterior insula, the anterior cingulate cortex and medial frontal cortex). Further, our results show that speech perception performance was associated with reduced brain response in the right superior temporal cortex in older compared to younger adults, and to an increase in response to noise in older adults in the left anterior temporal cortex. Talker variability was not associated with different activation patterns in older compared to younger adults. Together, these results support the notion of a diffuse rather than a focal dysfunction underlying speech perception in noise difficulties in older adults.
Collapse
Affiliation(s)
- Pascale Tremblay
- CERVO Brain Research Center, Québec City, QC, Canada; Université Laval, Département de réadaptation, Québec City, QC, Canada.
| | - Valérie Brisson
- CERVO Brain Research Center, Québec City, QC, Canada; Université Laval, Département de réadaptation, Québec City, QC, Canada
| | | |
Collapse
|
10
|
Rienäcker F, Van Gerven PWM, Jacobs HIL, Eck J, Van Heugten CM, Guerreiro MJS. The Neural Correlates of Visual and Auditory Cross-Modal Selective Attention in Aging. Front Aging Neurosci 2020; 12:498978. [PMID: 33304265 PMCID: PMC7693624 DOI: 10.3389/fnagi.2020.498978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Age-related deficits in selective attention have been demonstrated to depend on the sensory modality through which targets and distractors are presented. Some of these investigations suggest a specific impairment of cross-modal auditory selective attention. For the first time, this study is taking on a whole brain approach while including a passive perception baseline, to investigate the neural underpinnings of selective attention across age groups, and taking the sensory modality of relevant and irrelevant (i.e., distracting) stimuli into account. Sixteen younger (mean age = 23.3 years) and 14 older (mean age = 65.3 years), healthy participants performed a series of delayed match-to-sample tasks, in which participants had to selectively attend to visual stimuli, selectively attend to auditory stimuli, or passively view and hear both types of stimuli, while undergoing 3T fMRI. The imaging analyses showed that areas recruited by cross-modal visual and auditory selective attention in both age groups included parts of the dorsal attention and frontoparietal control networks (i.e., intraparietal sulcus, insula, fusiform gyrus, anterior cingulate, and inferior frontal cortex). Most importantly, activation throughout the brain did not differ across age groups, suggesting intact brain function during cross-modal selective attention in older adults. Moreover, stronger brain activation during cross-modal visual vs. cross-modal auditory selective attention was found in both age groups, which is consistent with earlier accounts of visual dominance. In conclusion, these results do not support the hypothesized age-related deficit of cross-modal auditory selective attention. Instead, they suggest that the underlying neural correlates of cross-modal selective attention are similar in younger and older adults.
Collapse
Affiliation(s)
- Franziska Rienäcker
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Pascal W M Van Gerven
- Department of Educational Development and Research, Faculty of Health, Medicine and Life Sciences, School of Health Professions Education (SHE), Maastricht University, Maastricht, Netherlands
| | - Heidi I L Jacobs
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Judith Eck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Caroline M Van Heugten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Manan HA, Franz EA, Yahya N. Functional connectivity changes in patients with brain tumours—A systematic review on resting state-fMRI. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.npbr.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Guo Z, Ma T, Chen F. Lateralization of processing spectrally-degraded music in the auditory cortex: An fNIRS study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2981-2984. [PMID: 31946515 DOI: 10.1109/embc.2019.8856756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Music processing is one of the most complex cognitive activities that human brain performs. The mechanism of music processing when musical sounds are perceived by listeners fitted with a cochlear implant (CI) is not well understood yet. The present study examined the effect of spectrally-degrading processing (via a noise-vocoding processing to simulate CI speech processing) on the hemispheric lateralization in music processing using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses in both hemispheres caused by the perception of the original, 32-channel noise-vocoded and 16-channel noise-vocoded musical sounds were measured using fNIRS. The right-hemispheric lateralization in the original, 32-channel noise-vocoded and 16-channel noise-vocoded music processing was about 72%, 67%, 56% of all participants, respectively. The activation level of the auditory cortex caused by the perception of the original music was higher than that of the noise-vocoded music, and the activation level reduced when decreasing the number of channels in the noise-vocoder processing. The activation levels in the right auditory cortex in all conditions were higher than those in the left auditory cortex; however, the difference of the contrast values between the right and left hemispheres reduced when decreasing the number of channels in the noise-vocoder processing. Results in this work indicated that the spectrally-degrading processing in CI speech processing may diminish the dominant role of the right hemisphere in music processing.
Collapse
|
13
|
Rogers CS, Jones MS, McConkey S, Spehar B, Van Engen KJ, Sommers MS, Peelle JE. Age-Related Differences in Auditory Cortex Activity During Spoken Word Recognition. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:452-473. [PMID: 34327333 PMCID: PMC8318202 DOI: 10.1162/nol_a_00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Understanding spoken words requires the rapid matching of a complex acoustic stimulus with stored lexical representations. The degree to which brain networks supporting spoken word recognition are affected by adult aging remains poorly understood. In the current study we used fMRI to measure the brain responses to spoken words in two conditions: an attentive listening condition, in which no response was required, and a repetition task. Listeners were 29 young adults (aged 19-30 years) and 32 older adults (aged 65-81 years) without self-reported hearing difficulty. We found largely similar patterns of activity during word perception for both young and older adults, centered on the bilateral superior temporal gyrus. As expected, the repetition condition resulted in significantly more activity in areas related to motor planning and execution (including the premotor cortex and supplemental motor area) compared to the attentive listening condition. Importantly, however, older adults showed significantly less activity in probabilistically defined auditory cortex than young adults when listening to individual words in both the attentive listening and repetition tasks. Age differences in auditory cortex activity were seen selectively for words (no age differences were present for 1-channel vocoded speech, used as a control condition), and could not be easily explained by accuracy on the task, movement in the scanner, or hearing sensitivity (available on a subset of participants). These findings indicate largely similar patterns of brain activity for young and older adults when listening to words in quiet, but suggest less recruitment of auditory cortex by the older adults.
Collapse
Affiliation(s)
- Chad S. Rogers
- Department of Psychology, Union College, Schenectady, NY, USA
| | - Michael S. Jones
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah McConkey
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brent Spehar
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristin J. Van Engen
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Mitchell S. Sommers
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan E. Peelle
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Utilization of functional MRI language paradigms for pre-operative mapping: a systematic review. Neuroradiology 2019; 62:353-367. [DOI: 10.1007/s00234-019-02322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|