1
|
Ruiu A, González-Méndez I, Sorroza-Martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. EMERGING APPLICATIONS OF CARBON NANOTUBES IN DRUG AND GENE DELIVERY 2023:119-155. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
The impact of single walled carbon nanotubes on the expression of microRNA in zebrafish (Danio rerio) embryos. Endocr Regul 2022; 56:115-125. [PMID: 35489050 DOI: 10.2478/enr-2022-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective. Single-walled carbon nanotubes (SWCNTs) are able to cross the blood-brain barrier, penetrate through the cell membrane, and accumulate in the cell nucleus, which purposefully allows their use in the health sciences as imaging probes and drug carriers in the cancer therapy. The aim of this study was to investigate the effect of low doses of SWCNTs on the expression of microRNAs associated with the cell proliferation and the brain development in zebrafish (Danio rerio) embryos. Methods. The zebrafish embryos (72 h post fertilization) were exposed to low doses of SWCNTs (2 and 8 ng/ml of medium) for 24 or 72 h. The microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) expression levels were measured by quantitative polymerase chain reaction analysis. Results. It was found that low doses of SWCNTs elicited dysregulation in the expression of numerous cell proliferation and brain development-related microRNAs (miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206) in dose- (2 and 8 ng/ml of medium) as well as malformations in the zebrafish embryos brain development in a time-dependent (24 and 72 h) manner. Conclusion. Taken together, the present data indicate that the low doses of SWCNTs disturbed the genome functions and reduced the miR-19, miR-21, miR-96, miR-143, miR-145, miR-182, and miR-206 expression levels in dose- and time-dependent manners and interrupted the brain development in the zebrafish embryos indicating for both the genotoxic and the neurotoxic interventions.
Collapse
|
3
|
Al Kury LT, Papandreou D, Hurmach VV, Dryn DO, Melnyk MI, Platonov MO, Prylutskyy YI, Ritter U, Scharff P, Zholos AV. Single-Walled Carbon Nanotubes Inhibit TRPC4-Mediated Muscarinic Cation Current in Mouse Ileal Myocytes. NANOMATERIALS 2021; 11:nano11123410. [PMID: 34947764 PMCID: PMC8703819 DOI: 10.3390/nano11123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPγs (200 μM), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5–1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation–contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.
Collapse
Affiliation(s)
- Lina T. Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates; (L.T.A.K.); (D.P.)
| | - Dimitrios Papandreou
- College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates; (L.T.A.K.); (D.P.)
| | - Vasyl V. Hurmach
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
| | - Dariia O. Dryn
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Anton Tsedik Str., 03057 Kyiv, Ukraine
| | - Mariia I. Melnyk
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Anton Tsedik Str., 03057 Kyiv, Ukraine
| | - Maxim O. Platonov
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine;
| | - Yuriy I. Prylutskyy
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693 Ilmenau, Germany; (U.R.); (P.S.)
| | - Peter Scharff
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693 Ilmenau, Germany; (U.R.); (P.S.)
| | - Alexander V. Zholos
- ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (V.V.H.); (D.O.D.); (M.I.M.); (Y.I.P.)
- Correspondence: ; Tel.: +380-44-4312-0403
| |
Collapse
|
4
|
Modeling of Single-Walled Carbon Nanotube Binding to Nitric Oxide Synthase and Guanylate Cyclase Molecular Structures. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|