1
|
Yamaguchi J, Andrade MA, Truong TT, Toney GM. Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus. J Neurosci 2024; 44:e1851222023. [PMID: 38154957 PMCID: PMC10869154 DOI: 10.1523/jneurosci.1851-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Tamara T Truong
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| |
Collapse
|
2
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
3
|
Kim S, Kim HK, Baek AR, Sung B, Yang BW, Kim YH, Lee JJ, Yang JU, Shin CH, Jung H, Kim M, Cho AE, Lee T, Chang Y. Rose bengal conjugated gadolinium complex as a new multimodal imaging agent targeting presynaptic vesicular glutamate transporters. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Systematic assessment of mechanistic data for FDA-certified food colors and neurodevelopmental processes. Food Chem Toxicol 2020; 140:111310. [DOI: 10.1016/j.fct.2020.111310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
|
5
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Kehrl J, Althaus JC, Showalter HD, Rudzinski DM, Sutton MA, Ueda T. Vesicular Glutamate Transporter Inhibitors: Structurally Modified Brilliant Yellow Analogs. Neurochem Res 2017; 42:1823-1832. [DOI: 10.1007/s11064-017-2198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
|
7
|
Rudolph R, Jahn HM, Courjaret R, Messemer N, Kirchhoff F, Deitmer JW. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 2016; 64:1265-80. [PMID: 27144942 DOI: 10.1002/glia.22999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Abstract
Synaptic transmission has been shown to be modulated by glial functions, but the modes of specific glial action may vary in different neural circuits. We have tested the hypothesis, if Bergmann GLIA (BG) are involved in shaping neuronal communication in the mouse cerebellar cortex, using acutely isolated cerebellar slices of wild-type (WT) and of glia-specific receptor knockout mice. Activation of P2Y1 receptors by ADP (100 µM) or glutamatergic receptors by AMPA (0.3 µM) resulted in a robust, reversible and repeatable rise of evoked inhibitory input in Purkinje cells by 80% and 150%, respectively. The ADP-induced response was suppressed by prior application of AMPA, and the AMPA-induced response was suppressed by prior application of ADP. Genetic deletion or pharmacological blockade of either receptor restored the response to the other receptor agonist. Both ADP and AMPA responses were sensitive to Rose Bengal, which blocks vesicular glutamate uptake, and to the NMDA receptor antagonist D-AP5. Our results provide strong evidence that activation of both ADP and AMPA receptors, located on BGs, results in the release of glutamate, which in turn activates inhibitory interneurons via NMDA-type glutamate receptors. This infers that BG cells, by means of metabotropic signaling via their AMPA and P2Y1 receptors, which mutually suppress each other, would interdependently contribute to the fine-tuning of Purkinje cell activity in the cerebellar cortex. GLIA 2016. GLIA 2016;64:1265-1280.
Collapse
Affiliation(s)
- Ramona Rudolph
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Hannah M Jahn
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Raphael Courjaret
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany.,Weill Cornell Medical College, Doha, Qatar
| | - Nanette Messemer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, D-66421 Homburg/Saar, Germany
| | - Joachim W Deitmer
- General Zoology, FB Biology, University of Kaiserslautern, P.B. 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|
8
|
|
9
|
Hackett JT, Ueda T. Glutamate Release. Neurochem Res 2015; 40:2443-60. [PMID: 26012367 DOI: 10.1007/s11064-015-1622-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/17/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Our aim was to review the processes of glutamate release from both biochemical and neurophysiological points of view. A large body of evidence now indicates that glutamate is specifically accumulated into synaptic vesicles, which provides strong support for the concept that glutamate is released from synaptic vesicles and is the major excitatory neurotransmitter. Evidence suggests the notion that synaptic vesicles, in order to sustain the neurotransmitter pool of glutamate, are endowed with an efficient mechanism for vesicular filling of glutamate. Glutamate-loaded vesicles undergo removal of Synapsin I by CaM kinase II-mediated phosphorylation, transforming to the release-ready pool. Vesicle docking to and fusion with the presynaptic plasma membrane are thought to be mediated by the SNARE complex. The Ca(2+)-dependent step in exocytosis is proposed to be mediated by synaptotagmin.
Collapse
Affiliation(s)
- John T Hackett
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908-0736, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA. .,Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Tamura Y, Ogita K, Ueda T. A new VGLUT-specific potent inhibitor: pharmacophore of Brilliant Yellow. Neurochem Res 2014; 39:117-28. [PMID: 24248859 PMCID: PMC4025951 DOI: 10.1007/s11064-013-1196-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
The increased concentration of glutamate in synaptic vesicles, mediated by the vesicular glutamate transporter (VGLUT), is an initial vital step in glutamate synaptic transmission. Evidence indicates that aberrant overexpression of VGLUT is involved in certain pathophysiologies of the central nervous system. VGLUT is subject to inhibition by various types of agents. The most potent VGLUT-specific inhibitor currently known is Trypan Blue, which is highly charged, hence membrane-impermeable. We have sought a potent, VGLUT-specific agent amenable to easy modification to a membrane-permeable analog. We provide evidence that Brilliant Yellow exhibits potent, VGLUT-specific inhibition, with a Ki value of 12 nM. Based upon structure-activity relationship studies and molecular modeling, we have defined the potent inhibitory pharmacophore of Brilliant Yellow. This study provides new insight into development of a membrane-permeable agent to lead to specific blockade, with high potency, of accumulation of glutamate into synaptic vesicles in neurons.
Collapse
Affiliation(s)
- Yutaka Tamura
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Kiyokazu Ogita
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
| | - Tetsufumi Ueda
- Molecular and Behavioral Neuroscience Institute, Medical School, The University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, USA
- Department of Pharmacology, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Van Liefferinge J, Massie A, Portelli J, Di Giovanni G, Smolders I. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 2013; 7:139. [PMID: 24009559 PMCID: PMC3757300 DOI: 10.3389/fncel.2013.00139] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/11/2013] [Indexed: 12/18/2022] Open
Abstract
The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.
Collapse
|
12
|
The food colorant erythrosine is a promiscuous protein–protein interaction inhibitor. Biochem Pharmacol 2011; 81:810-8. [DOI: 10.1016/j.bcp.2010.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/22/2022]
|
13
|
Cheng XR, Yang Y, Zhou WX, Zhang YX. Expression of VGLUTs contributes to degeneration and acquisition of learning and memory. Neurobiol Learn Mem 2011; 95:361-75. [PMID: 21295146 DOI: 10.1016/j.nlm.2011.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 12/27/2022]
Abstract
Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory.
Collapse
Affiliation(s)
- Xiao-Rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|
14
|
Pietrancosta N, Kessler A, Favre-Besse FC, Triballeau N, Quentin T, Giros B, El Mestikawy S, Acher FC. Rose Bengal analogs and vesicular glutamate transporters (VGLUTs). Bioorg Med Chem 2010; 18:6922-33. [PMID: 20708942 DOI: 10.1016/j.bmc.2010.06.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) allow the loading of presynaptic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. Rose Bengal (RB) is the most potent known VGLUT inhibitor (Ki 25 nM); therefore we designed, synthesized and tested in brain preparations, a series of analogs based on this scaffold. We showed that among the two tautomers of RB, the carboxylic and not the lactonic form is active against VGLUTs and generated a pharmacophore model to determine the minimal structure requirements. We also tested RB specificity in other neurotransmitter uptake systems. RB proved to potently inhibit VMAT (Ki 64 nM) but weakly VACHT (Ki>9.7 microM) and may be a useful tool in glutamate/acetylcholine co-transmission studies.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75270 Paris 06, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu C, Cui C, Alkon DL. Age-dependent enhancement of inhibitory synaptic transmission in CA1 pyramidal neurons via GluR5 kainate receptors. Hippocampus 2009; 19:706-17. [PMID: 19123252 DOI: 10.1002/hipo.20544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Changes in hippocampal synaptic networks during aging may contribute to age-dependent compromise of cognitive functions such as learning and memory. Previous studies have demonstrated that GABAergic synaptic transmission exhibits age-dependent changes. To better understand such age-dependent changes of GABAergic synaptic inhibition, we performed whole-cell recordings from pyramidal cells in the CA1 area of acute hippocampal slices on aged (24-26 months old) and young (2-4 months old) Brown-Norway rats. We found that the frequency and amplitude of spontaneous inhibitory postsynaptic current (IPSCs) were significantly increased in aged rats, but the frequency and amplitude of mIPSCs were decreased. Furthermore, the regulation of GABAergic synaptic transmission by GluR5 containing kainate receptors was enhanced in aged rats, which was revealed by using LY382884 (a GluR5 kainate receptor antagonist) and ATPA (a GluR5 kainate receptor agonist). Moreover, we demonstrated that vesicular glutamate transporters are involved in the kainate receptor dependent regulation of sIPSCs. Taken together, these results suggest that GABAergic synaptic transmission is potentiated in aged rats, and GluR5 containing kainate receptors regulate the inhibitory synaptic transmission through endogenous glutamate. These alterations of GABAergic input with aging could contribute to age-dependent cognitive decline.
Collapse
Affiliation(s)
- Changqing Xu
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850-3332, USA.
| | | | | |
Collapse
|
16
|
Chaudhry FA, Boulland JL, Jenstad M, Bredahl MKL, Edwards RH. Pharmacology of neurotransmitter transport into secretory vesicles. Handb Exp Pharmacol 2008:77-106. [PMID: 18064412 DOI: 10.1007/978-3-540-74805-2_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many neuropsychiatric disorders appear to involve a disturbance of chemical neurotransmission, and the mechanism of available therapeutic agents supports this impression. Postsynaptic receptors have received considerable attention as drug targets, but some of the most successful agents influence presynaptic processes, in particular neurotransmitter reuptake. The pharmacological potential of many other presynaptic elements, and in particular the machinery responsible for loading transmitter into vesicles, has received only limited attention. The similarity of vesicular transporters to bacterial drug resistance proteins and the increasing evidence for regulation of vesicle filling and recycling suggest that the pharmacological potential of vesicular transporters has been underestimated. In this review, we discuss the pharmacological effects of psychostimulants and therapeutic agents on transmitter release.
Collapse
Affiliation(s)
- Farrukh A Chaudhry
- The Biotechnology Centre of Oslo, University of Oslo, 1125, Blindern, Oslo, 0317, Norway.
| | | | | | | | | |
Collapse
|
17
|
Satoh K, Nonaka R, Ishikawa F, Ogata A, Nagai F. In Vitro Screening Assay for Detecting Aromatase Activity Using Rat Ovarian Microsomes and Estrone ELISA. Biol Pharm Bull 2008; 31:357-62. [DOI: 10.1248/bpb.31.357] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kanako Satoh
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Rhouichi Nonaka
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Fusako Ishikawa
- Department of Food Safety, Tokyo Metropolitan Institute of Public Health
| | - Akio Ogata
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| | - Fumiko Nagai
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health
| |
Collapse
|