1
|
Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox Res 2021; 39:1338-1351. [PMID: 34057703 DOI: 10.1007/s12640-021-00379-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.
Collapse
|
2
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
3
|
Molina SJ, Buján GE, Rodriguez Gonzalez M, Capani F, Gómez-Casati ME, Guelman LR. Exposure of Developing Male Rats to One or Multiple Noise Sessions and Different Housing Conditions: Hippocampal Thioredoxin Changes and Behavioral Alterations. Front Behav Neurosci 2019; 13:182. [PMID: 31456671 PMCID: PMC6700388 DOI: 10.3389/fnbeh.2019.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
Exposure of developing rats to noise has shown to induce hippocampal-related behavioral alterations that were prevented after a week of housing in an enriched environment. However, neither the effect of repeated exposures nor its impact on key endogenous antioxidants had been studied yet. Thus, the aim of the present work was to reveal novel data about hippocampal oxidative state through the measurement of possible age-related differences in the levels of hippocampal thioredoxins in rats exposed to noise at different developmental ages and subjected to different schemes and housing conditions. In addition, the possibility that oxidative changes could underlie hippocampal-related behavioral changes was also analyzed. Developing male Wistar rats were exposed to noise for 2 h, either once or for 5 days. Upon weaning, some animals were transferred to an enriched cage for 1 week, whereas others were kept in standard cages. One week later, auditory and behavioral assessments, as well as measurement of hippocampal thioredoxin, were performed. Whereas no changes in the auditory function were observed, significant behavioral differences were found, that varied according to the age, scheme of exposure and housing condition. In addition, a significant increase in Trx-1 levels was found in all noise-exposed groups housed in standard cages. Housing animals in an enriched environment for 1 week was effective in preventing most of these changes. These findings suggest that animals become less susceptible to undergo behavioral alterations after repeated exposure to an environmental challenge, probably due to the ability of adaptation to an unfavorable condition. Moreover, it could be hypothesized that damage to younger individuals could be more easily prevented by a housing manipulation.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Francisco Capani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Cardiológicas (ININCA, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | | | - Laura Ruth Guelman
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Ugurluer G, Cebi A, Mert H, Mert N, Serin M, Erkal HS. Neuroprotective effects of erythropoietin against oxidant injury following brain irradiation: an experimental study. Arch Med Sci 2016; 12:1348-1353. [PMID: 27904528 PMCID: PMC5108378 DOI: 10.5114/aoms.2016.58622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Radiation therapy (RT) is a major treatment modality, and the central nervous system is a dose-limiting organ in clinical RT. This experimental study aims to present the evaluation of the neuroprotective effects of erythropoietin (EPO) against oxidant injury following brain irradiation in rats. MATERIAL AND METHODS Forty Wistar rats were randomly assigned to four groups (n = 10 each). In group 1 the rats received no EPO and underwent sham RT. The rats in groups 2 and 3 received EPO. In group 2 rats underwent sham RT, while in group 3 rats received RT. The rats in group 4 received no EPO and underwent RT. Rats were irradiated using a Cobalt-60 teletherapy machine using a single fraction of 20 Gy covering the whole brain. Cervical dislocation euthanasia was performed. The nitrite and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) and glutathione peroxidase (GSHPX) activities were evaluated in dissected brain tissues. RESULTS The nitrite and MDA levels were higher in the RT group (2.10 ±0.62 ppm, 26.02 ±2.16 nmol/ml; p < 0.05) and lower in the EPO + RT group (1.45 ±0.12 ppm, 25.49 ±1.90 nmol/ml; p < 0.05). The SOD and GSHPX activity was higher in the EPO + RT group (2.62 ±0.49 U/mg, 1.75 ±0.25 U/mg, p < 0.05). CONCLUSIONS This study supports the probable neuroprotective effects of EPO against oxidant injury following brain irradiation in a rat model, presumably through decreasing free radical production and increasing expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Gamze Ugurluer
- Department of Radiation Oncology, Faculty of Medicine, Acibadem University, Acibadem Adana Hospital, Adana, Turkey
| | - Aysegul Cebi
- Department of Food Engineering, Faculty of Engineering, Giresun University, Giresun, Turkey
| | - Handan Mert
- Department of Biochemistry, Faculty of Veterinary, Yuzuncu Yil University, Van, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary, Yuzuncu Yil University, Van, Turkey
| | - Meltem Serin
- Department of Radiation Oncology, Faculty of Medicine, Acibadem University, Acibadem Adana Hospital, Adana, Turkey
| | - Haldun Sukru Erkal
- Department of Radiation Oncology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
5
|
Aktas S, Comelekoglu U, Yilmaz SN, Yalin S, Arslantas S, Yilmaz BC, Sogut F, Berkoz M, Sungur MA. Electrophysiological, biochemical and ultrastructural effects of radiotherapy on normal rat sciatic nerve. Int J Radiat Biol 2012; 89:155-61. [DOI: 10.3109/09553002.2013.734941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Caceres LG, Aon Bertolino L, Saraceno GE, Zorrilla Zubilete MA, Uran SL, Capani F, Guelman LR. Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status. Brain Res 2010; 1312:67-78. [DOI: 10.1016/j.brainres.2009.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/12/2009] [Accepted: 11/20/2009] [Indexed: 02/03/2023]
|