1
|
Jeong H, Moye LS, Southey BR, Hernandez AG, Dripps I, Romanova EV, Rubakhin SS, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Front Syst Neurosci 2018; 12:63. [PMID: 30618656 PMCID: PMC6305622 DOI: 10.3389/fnsys.2018.00063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms. The RNA-seq profiles of two nervous system regions associated with pain, the trigeminal ganglia (TG) and the nucleus accumbens (NAc), were compared in mice receiving chronic NTG treatment relative to control (CON) mice. Among the 109 genes that exhibited an NTG treatment-by-region interaction, solute carrier family 32 (GABA vesicular transporter) member 1 (Slc32a1) and preproenkephalin (Penk) exhibited reversal of expression patterns between the NTG and CON groups. Erb-b2 receptor tyrosine kinase 4 (Erbb4) and solute carrier family 1 (glial high affinity glutamate transporter) member 2 (Slc1a2) exhibited consistent differential expression between treatments across regions albeit at different magnitude. Period circadian clock 1 (Per1) was among the 165 genes that exhibited significant NTG treatment effect. Biological processes disrupted by NTG in a region-specific manner included adaptive and innate immune responses; whereas glutamatergic and dopaminergic synapses and rhythmic process were disrupted in both regions. Regulatory network reconstruction highlighted the widespread role of several transcription factors (including Snrnp70, Smad1, Pax6, Cebpa, and Smpx) among the NTG-disrupted target genes. These results advance the understanding of the molecular mechanisms of hyperalgesia that can be applied to therapies to ameliorate chronic pain and migraine.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laura S. Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Wang J, Cui W, Wei J, Sun D, Gutala R, Gu J, Li MD. Genome-wide expression analysis reveals diverse effects of acute nicotine exposure on neuronal function-related genes and pathways. Front Psychiatry 2011; 2:5. [PMID: 21556275 PMCID: PMC3089989 DOI: 10.3389/fpsyt.2011.00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 12/04/2022] Open
Abstract
Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1 h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Regulator of G protein-signaling (RGS) proteins are a family of more than 30 intracellular proteins that negatively modulate intracellular signaling of receptors in the G protein-coupled receptor family. This family includes receptors for opioids, cannabinoids, and dopamine that mediate the acute effects of addictive drugs or behaviors and chronic effects leading to the development of addictive disease. Members of the RGS protein family, by negatively modulating receptor signaling, influence the intracellular processes that lead to addiction. In turn, addictive drugs control the expression levels of several RGS proteins. This review will consider the distribution and mechanisms of action of RGS proteins, particularly the R4 and R7 families that have been implicated in the actions of addictive drugs, how knowledge of these proteins is contributing to an understanding of addictive processes, and whether specific RGS proteins could provide targets for the development of medications to manage and/or treat addiction.
Collapse
Affiliation(s)
- John Traynor
- Department of Pharmacology and Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109-5632, USA.
| |
Collapse
|
4
|
Abstract
Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.
Collapse
|
5
|
Abstract
Nicotine achieves its psychopharmacological effects by interacting with nicotinic acetylcholine receptors (nAChRs) in the brain. There are numerous subtypes of nAChR that differ in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitise. The nAChRs are differentially localised to different brain regions and are found on presynaptic terminals as well as in somatodendritic regions of neurones. Through their permeability to cations, these ion channel proteins can influence both neuronal excitability and cell signalling mechanisms, and these various responses can contribute to the development or maintenance of dependence. However, many questions and uncertainties remain in our understanding of these events and their relevance to tobacco addiction. In this chapter, we briefly overview the fundamental characteristics of nAChRs that are germane to nicotine's effects and then consider the cellular responses to acute and chronic nicotine, with particular emphasis on dopamine systems because they have been the most widely studied in the context of nicotine dependence. Where appropriate, methodological aspects are critically reviewed.
Collapse
Affiliation(s)
- Jacques Barik
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
6
|
Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VVTS, Toth R. Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 2007; 90:690-702. [PMID: 17936574 DOI: 10.1016/j.ygeno.2007.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
Alcoholism is a heritable disease that afflicts about 8% of the adult population. Its development and symptoms, such as craving, loss of control, physical dependence, and tolerance, have been linked to changes in mesolimbic, mesocortical neurotransmitter systems utilizing biogenic amines, GABA, and glutamate. Identification of genes predisposing to alcoholism, or to alcohol-related behaviors in animal models, has been elusive because of variable interactions of multiple genes with relatively small individual effect size and sensitivity of the predisposing genotype to lifestyle and environmental factors. Here, using near-isogenic advanced animal models with reduced genetic background interactions, we integrate gene mapping and gene mRNA expression data in segregating and congenic mice and identify glutamate receptor metabotropic 7 (Grm7) as a cis-regulated gene for alcohol consumption. Traditionally, the mesoaccumbal dopamine reward hypothesis of addiction and the role of the ionotropic glutamate receptors have been emphasized. Our results lend support to an emerging direction of research on the role of metabotropic glutamate receptors in alcoholism and drug addiction. These data suggest for the first time that Grm7 is a risk factor for alcohol drinking and a new target in addiction therapy.
Collapse
Affiliation(s)
- Csaba Vadasz
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|