1
|
Evans SR, West C, Klein-Seetharaman J. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Comput Struct Biotechnol J 2021; 19:5348-5359. [PMID: 34667532 PMCID: PMC8495038 DOI: 10.1016/j.csbj.2021.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-synuclein (αSyn) is often described as a predominantly disordered protein that has a propensity to self-assemble into toxic oligomers that are found in patients with Parkinson's and Alzheimer's diseases. αSyn's chaperone behavior and tetrameric structure are proposed to be protective against toxic oligomerization. In this paper, we extended the previously proposed similarity between αSyn and 14-3-3 proteins to the α-helical tetrameric species of αSyn in detail. 14-3-3 proteins are a family of well-folded proteins with seven human isoforms, and function in signal transduction and as molecular chaperones. We investigated protein homology, using sequence alignment, amyloid, and disorder prediction, as well as three-dimensional visualization and protein-interaction networks. Our results show sequence homology and structural similarity between the aggregation-prone non-amyloid-β component (NAC) residues Val-52 to Gly-111 in αSyn and 14-3-3 sigma residues Leu-12 to Gly-78. We identified an additional region of sequence homology in the C-terminal region of αSyn (residues Ser-129 to Asp-135) and a C-terminal loop of 14-3-3 between helix αH and αI (residues Ser-209 to Asp-215). This data indicates αSyn shares conserved domain architecture with small heat shock proteins. We show predicted regions of high amyloidogenic propensity and intrinsic structural disorder in αSyn coincide with amyloidogenic and disordered predictions for 14-3-3 proteins. The homology in the NAC region aligns with residues involved in dimer- and tetramerization of the non-amyloidogenic 14-3-3 proteins. Because 14-3-3 proteins are generally not prone to misfolding, our results lend further support to the hypothesis that the NAC region is critical to the assembly of αSyn into the non-toxic tetrameric state.
Collapse
Key Words
- 14-3-3 proteins
- Alpha-synuclein
- BAD, BCL2 associated agonist of cell death gene name
- Homology
- IDP, Intrinsically disorder protein(s)
- MAPT, microtubule-associated protein tau gene name
- PPI, Protein-Protein interactions
- Prediction
- Protein structure
- SIP, shared interaction partner
- SNCA, alpha-synuclein gene name
- TH, tyrosine hydroxylase gene name
- Tetramer
- YWHAB, 14-3-3 protein beta isoform gene name
- YWHAE, 14-3-3 protein epsilon isoform gene name
- YWHAH, 14-3-3 protein eta isoform gene name
- pHSPB6, phosphorylated Heat Shock Protein beta-6
- sHSP, small heat shock protein
- αSyn, alpha-synuclein
Collapse
Affiliation(s)
- Sarah R. Evans
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Colista West
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| | - Judith Klein-Seetharaman
- Colorado School of Mines, Quantitative Biosciences and Engineering, 1012 14 St, Chemistry, Golden, CO 80401, USA
- Colorado School of Mines, Department of Chemistry, 1012 14 St, Chemistry, Golden, CO 80401, USA
| |
Collapse
|
2
|
Design, expression, purification and crystallization of human 14-3-3ζ protein chimera with phosphopeptide from proapoptotic protein BAD. Protein Expr Purif 2020; 175:105707. [PMID: 32682909 DOI: 10.1016/j.pep.2020.105707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
14-3-3 protein isoforms regulate multiple processes in eukaryotes, including apoptosis and cell division. 14-3-3 proteins preferentially recognize phosphorylated unstructured motifs, justifying the protein-peptide binding approach to study 14-3-3/phosphotarget complexes. Tethering of human 14-3-3σ with partner phosphopeptides via a short linker has provided structural information equivalent to the use of synthetic phosphopeptides, simultaneously facilitating purification and crystallization. Nevertheless, the broader applicability to other 14-3-3 isoforms and phosphopeptides was unclear. Here, we designed a novel 14-3-3ζ chimera with a conserved phosphopeptide from BAD, whose complex with 14-3-3 is a gatekeeper of apoptosis regulation. The chimera could be bacterially expressed and purified without affinity tags. Co-expressed PKA efficiently phosphorylates BAD within the chimera and blocks its interaction with a known 14-3-3 phosphotarget, suggesting occupation of the 14-3-3 grooves by the tethered BAD phosphopeptide. Efficient crystallization of the engineered protein suggests suitability of the "chimeric" approach for studies of other relevant 14-3-3 complexes.
Collapse
|
3
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Xu X, Li L, Liu Z, Yao X, Zhang X, Liu S, Liu L. Investigation of the inhibition effect of arachidonic acid on the core structure of the HIV-1 gp41. J Pharm Biomed Anal 2018; 161:377-382. [PMID: 30199809 DOI: 10.1016/j.jpba.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 11/29/2022]
Abstract
The gp41 transmembrane domain of the envelope glycoprotein of the human immunodeficiency virus (HIV) modulates the conformation of the viral envelope spike. During the HIV fusion process, C-terminal heptad repeat (CHR, C34) wrap antiparallel to the N-terminal heptad repeat (NHR, N36) helices to form a stable six-helix bundle (6-HB) core structure, which brings the viral and cell membranes into close proximity for fusion. Therefore, inhibiting the formation of 6-HB is considered to be a key activity of an effective HIV-1 fusion inhibitor. The level of arachidonic acid (AA) is increased in HIV infected patients. Our study provides a new insight into the functional role of AA during the formation of HIV-1 gp41 6-HB. Native polyacrylamide gel electrophoresis (N-PAGE), enzyme-linked-immunosorbent serologic assay (ELISA) and circular dichroism (CD) spectroscopy were used to investigate the inhibition of AA for the formation of 6-HB. Molecular docking technique was adopted to explore the underlying mechanism. HIV-1 JR-FL (R5 strain) Envelope was adopted to determine the inhibition effect of AA. AA is shown to interfere with the formation of α-helical complexes of N36 and C34 by N-PAGE, ELISA and CD spectroscopy. The isotherm titration microcalorimetry (ITC) results indicate there is a single class of binding site on N36. ΔH and ΔS are -12.43 kJ mol-1 and 70.07 J mol-1 K-1, respectively, indicating hydrophobic interaction and electrostatic forces are the main acting forces. The molecular docking results manifest that AA interacts with the hydrophobic residues (Trp-571, Leu-568, Val-570 and Leu-576) and ionic interactions occur between Arg-579 and the -COOH of AA. The inhibitory activity of AA on HIV-1 JR-FL is quantified by 50% effective concentration (EC50) and 90% effective concentration (EC90), which are 31.42 ± 1.08 and 133.47 ± 18.10 μg mL-1, respectively. All the results indicate that AA is able to inhibit the formation of 6-HB but cannot disrupt the preformed 6-HB. Therefore, AA is a potential inhibitor for the viral fusion/entry.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojun Yao
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lihong Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Sreedhar R, Arumugam S, Thandavarayan RA, Karuppagounder V, Koga Y, Nakamura T, Harima M, Watanabe K. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus. Int J Biochem Cell Biol 2017; 88:92-99. [DOI: 10.1016/j.biocel.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 05/04/2017] [Indexed: 01/13/2023]
|
6
|
Saunders EFH, Ramsden CE, Sherazy MS, Gelenberg AJ, Davis JM, Rapoport SI. Reconsidering Dietary Polyunsaturated Fatty Acids in Bipolar Disorder: A Translational Picture. J Clin Psychiatry 2016; 77:e1342-e1347. [PMID: 27788314 PMCID: PMC6093189 DOI: 10.4088/jcp.15com10431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/11/2016] [Indexed: 01/07/2023]
Abstract
Inflammation is an important mediator of pathophysiology in bipolar disorder. The omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) metabolic pathways participate in several inflammatory processes and have been linked through epidemiologic and clinical studies to bipolar disorder and its response to treatment. We review the proposed role of PUFA metabolism in neuroinflammation, modulation of brain PUFA metabolism by antimanic medications in rodent models, and anti-inflammatory pharmacotherapy in bipolar disorder and in major depressive disorder (MDD). Although the convergence of findings between preclinical and postmortem clinical data is compelling, we investigate why human trials of PUFA as treatment are mixed. We view the biomarker and treatment study findings in light of the evidence for the hypothesis that arachidonic acid hypermetabolism contributes to bipolar disorder pathophysiology and propose that a combined high n-3 plus low n-6 diet should be tested as an adjunct to current medication in future trials.
Collapse
Affiliation(s)
- Erika F H Saunders
- Department of Psychiatry, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, 500 University Dr, PO Box 850, Mail Code: HO73, Hershey, PA 17033-0850.
- Department of Psychiatry, Penn State College of Medicine and Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Psychiatry and Depression Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher E Ramsden
- Section on Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mostafa S Sherazy
- Department of Psychiatry, Penn State College of Medicine and Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Alan J Gelenberg
- Department of Psychiatry, Penn State College of Medicine and Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, Illinois, USA
| | - Stanley I Rapoport
- Office of Scientific Director, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Samikkannu T, Rao KVK, Ding H, Agudelo M, Raymond AD, Yoo C, Nair MPN. Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid. PLoS One 2014; 9:e106348. [PMID: 25171226 PMCID: PMC4149565 DOI: 10.1371/journal.pone.0106348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022] Open
Abstract
Arachidonic acid (AA) is known to be increased in HIV infected patients and illicit drug users are linked with severity of viral replication, disease progression, and impaired immune functions. Studies have shown that cocaine accelerates HIV infection and disease progression mediated by immune cells. Dendritic cells (DC) are the first line of antigen presentation and defense against immune dysfunction. However, the role of cocaine use in HIV associated acceleration of AA secretion and its metabolites on immature dendritic cells (IDC) has not been elucidated yet. The aim of this study is to elucidate the mechanism of AA metabolites cyclooxygenase-2 (COX-2), prostaglandin E2 synthetase (PGE2), thromboxane A2 receptor (TBXA2R), cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), 14-3-3 ζ/δ and 5-lipoxygenase (5-LOX) mediated induction of IDC immune dysfunctions in cocaine using HIV positive patients. The plasma levels of AA, PGE2, 15d-PGJ2, 14-3-3 ζ/δ and IDC intracellular COX-2 and 5-LOX expression were assessed in cocaine users, HIV positive patients, HIV positive cocaine users and normal subjects. Results showed that plasma concentration levels of AA, PGE2 and COX-2, TBXA2R and 5-LOX in IDCs of HIV positive cocaine users were significantly higher whereas 15d-PGJ2 and 14-3-3 ζ/δ were significantly reduced compared to either HIV positive subjects or cocaine users alone. This report demonstrates that AA metabolites are capable of mediating the accelerative effects of cocaine on HIV infection and disease progression.
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Kurapati V K Rao
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Hong Ding
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Marisela Agudelo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Andrea D Raymond
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Modesto A. Maidique Campus, Miami, Florida, United States of America
| |
Collapse
|
8
|
Fiorillo A, di Marino D, Bertuccini L, Via A, Pozio E, Camerini S, Ilari A, Lalle M. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference. PLoS One 2014; 9:e92902. [PMID: 24658679 PMCID: PMC3962474 DOI: 10.1371/journal.pone.0092902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/26/2014] [Indexed: 12/29/2022] Open
Abstract
The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Department of Biochemical Sciences “A. Rossi-Fanelli”, University of Rome “Sapienza”, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy and Institute Pasteur Cenci-Bolognetti Foundation at Department of Biochemical Sciences “A. Rossi-Fanelli”, University of Rome “Sapienza”, Rome, Italy
| | | | - Lucia Bertuccini
- Department of Health and Technology, Istituto Superiore di Sanità, Rome, Italy
| | - Allegra Via
- Department of Physics, University of Rome “Sapienza”, Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy and Institute Pasteur Cenci-Bolognetti Foundation at Department of Biochemical Sciences “A. Rossi-Fanelli”, University of Rome “Sapienza”, Rome, Italy
| | - Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
9
|
Gitz E, Koopman CD, Giannas A, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JWN, Gerritsen HC, Urbanus RT. Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα. Haematologica 2013; 98:1810-8. [PMID: 23753027 DOI: 10.3324/haematol.2013.087221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα remains ill defined. We have previously found that glycoprotein Ibα forms clusters upon platelet cooling and hypothesized that such a property enhances the interaction with von Willebrand factor under physiological conditions. We analyzed the distribution of glycoprotein Ibα with Förster resonance energy transfer using time-gated fluorescence lifetime imaging microscopy. Perfusion at a shear rate of 1,600 s(-1) induced glycoprotein Ibα clusters on platelets adhered to von Willebrand factor, while clustering did not require von Willebrand factor contact at 10,000 s(-1). Shear-induced clustering was reversible, not accompanied by granule release or αIIbβ3 activation and improved glycoprotein Ibα-dependent platelet interaction with von Willebrand factor. Clustering required glycoprotein Ibα translocation to lipid rafts and critically depended on arachidonic acid-mediated binding of 14-3-3ζ to its cytoplasmic tail. This newly identified mechanism emphasizes the ability of platelets to respond to mechanical force and provides new insights into how changes in hemodynamics influence arterial thrombus formation.
Collapse
|
10
|
Sluchanko NN, Gusev NB. Oligomeric structure of 14-3-3 protein: What do we know about monomers? FEBS Lett 2012; 586:4249-56. [DOI: 10.1016/j.febslet.2012.10.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 10/20/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
11
|
Gitz E, Koekman CA, van den Heuvel DJ, Deckmyn H, Akkerman JW, Gerritsen HC, Urbanus RT. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts. Haematologica 2012; 97:1873-81. [PMID: 22733027 DOI: 10.3324/haematol.2012.066290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Storing platelets for transfusion at room temperature increases the risk of microbial infection and decreases platelet functionality, leading to out-date discard rates of up to 20%. Cold storage may be a better alternative, but this treatment leads to rapid platelet clearance after transfusion, initiated by changes in glycoprotein Ibα, the receptor for von Willebrand factor. DESIGN AND METHODS We examined the change in glycoprotein Ibα distribution using Förster resonance energy transfer by time-gated fluorescence lifetime imaging microscopy. RESULTS Cold storage induced deglycosylation of glycoprotein Ibα ectodomain, exposing N-acetyl-D-glucosamine residues, which sequestered with GM1 gangliosides in lipid rafts. Raft-associated glycoprotein Ibα formed clusters upon binding of 14-3-3ζ adaptor proteins to its cytoplasmic tail, a process accompanied by mitochondrial injury and phosphatidyl serine exposure. Cold storage left glycoprotein Ibα surface expression unchanged and although glycoprotein V decreased, the fall did not affect glycoprotein Ibα clustering. Prevention of glycoprotein Ibα clustering by blockade of deglycosylation and 14-3-3ζ translocation increased the survival of cold-stored platelets to above the levels of platelets stored at room temperature without compromising hemostatic functions. CONCLUSIONS We conclude that glycoprotein Ibα translocates to lipid rafts upon cold-induced deglycosylation and forms clusters by associating with 14-3-3ζ. Interference with these steps provides a means to enable cold storage of platelet concentrates in the near future.
Collapse
Affiliation(s)
- Eelo Gitz
- Thrombosis and Hemostasis Laboratory, Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
van der Wal DE, Gitz E, Du VX, Lo KSL, Koekman CA, Versteeg S, Akkerman JWN. Arachidonic acid depletion extends survival of cold-stored platelets by interfering with the [glycoprotein Ibα--14-3-3ζ] association. Haematologica 2012; 97:1514-22. [PMID: 22371179 DOI: 10.3324/haematol.2011.059956] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cold storage of platelets reduces bacterial growth and preserves their hemostatic properties better than current procedures do. However, storage at 0°C induces [14-3-3ζ-glycoprotein Ibα] association, 14-3-3ζ release from phospho-Bad, Bad activation and apoptosis. DESIGN AND METHODS We investigated whether arachidonic acid, which also binds 14-3-3ζ, contributes to coldinduced apoptosis. RESULTS Cold storage activated P38-mitogen-activated protein kinase and released arachidonic acid, which accumulated due to cold inactivation of cyclooxygenase-1/thromboxane synthase. Accumulated arachidonic acid released 14-3-3ζ from phospho-Bad and decreased the mitochondrial membrane potential, which are steps in the induction of apoptosis. Addition of arachidonic acid did the same and its depletion made platelets resistant to cold-induced apoptosis. Incubation with biotin-arachidonic acid revealed formation of an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex. Indomethacin promoted complex formation by accumulating arachidonic acid and released 14-3-3ζ from cyclo-oxygenase-1. Arachidonic acid depletion prevented the cold-induced reduction of platelet survival in mice. CONCLUSIONS We conclude that cold storage induced apoptosis through an [arachidonic acid-14-3-3ζ-glycoprotein Ibα] complex, which released 14-3-3ζ from Bad in an arachidonic acid-dependent manner. Although arachidonic acid depletion reduced agonist-induced thromboxane A(2) formation and aggregation, arachidonic acid repletion restored these functions, opening ways to reduce apoptosis during storage without compromising hemostatic functions post-transfusion.
Collapse
Affiliation(s)
- Dianne E van der Wal
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim HW, Rapoport SI, Rao JS. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol Dis 2009; 37:596-603. [PMID: 19945534 DOI: 10.1016/j.nbd.2009.11.010] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/09/2009] [Accepted: 11/14/2009] [Indexed: 11/15/2022] Open
Abstract
Bipolar disorder (BD) is a progressive psychiatric disorder characterized by recurrent changes of mood and is associated with cognitive decline. There is evidence of excitotoxicity, neuroinflammation, upregulated arachidonic acid (AA) cascade signaling and brain atrophy in BD patients. These observations suggest that BD pathology may be associated with apoptosis as well as with disturbed synaptic function. To test this hypothesis, we measured mRNA and protein levels of the pro-apoptotic (Bax, BAD, caspase-9 and caspase-3) and anti-apoptotic factors (BDNF and Bcl-2) and of pre- and post-synaptic markers (synaptophysin and drebrin), in postmortem prefrontal cortex (Brodmann area 9) from 10 BD patients and 10 age-matched controls. Consistent with the hypothesis, BD brains showed significant increases in protein and mRNA levels of the pro-apoptotic factors and significant decreases of levels of the anti-apoptotic factors and the synaptic markers, synaptophysin and drebrin. These differences may contribute to brain atrophy and progressive cognitive changes in BD.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Kim HW, Chang YC, Chen M, Rapoport SI, Rao JS. Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death. BMC Neurosci 2009; 10:123. [PMID: 19785755 PMCID: PMC2762981 DOI: 10.1186/1471-2202-10-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic N-Methyl-d-aspartate (NMDA) administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days) to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control. RESULTS Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3zeta was increased, as well as Fluoro-Jade B (FJB) staining, a marker of neuronal loss. CONCLUSION This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|