1
|
Effects of extremely low frequency electromagnetic field at 50 Hz on myofibrillar protein from grass carp (Ctenopharyngodon idellus) during chilled storage at 4 °C. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Caballero-Villarraso J, Medina FJ, Escribano BM, Agüera E, Santamaría A, Pascual-Leone A, Túnez I. Mechanisms Involved in Neuroprotective Effects of Transcranial Magnetic Stimulation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:557-573. [PMID: 34370648 DOI: 10.2174/1871527320666210809121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Francisco J Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Veterinaria, Universidad de Córdoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Neurología, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A. Mexico City, Mexico
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Instituto Guttman de Neurorrehabilitación, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
3
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Quesnel-Galván LR, Torres-Durán PV, Elías-Viñas D, Verdugo-Díaz L. Effect of extremely low frequency magnetic fields on oxidative balance in rat brains subjected to an experimental model of chronic unpredictable mild stress. BMC Neurosci 2021; 22:52. [PMID: 34488631 PMCID: PMC8419997 DOI: 10.1186/s12868-021-00656-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background There has been an increasing interest in researching on the effects of extremely low-frequency magnetic fields on living systems. The mechanism of action of extremely low-frequency magnetic fields on organisms has not been established. One of the hypotheses is related to induce changes in oxidative balance. In this study, we measured the effects of chronic unpredictable mild stress induced-oxidative balance of rat’s brain exposed to extremely low-frequency magnetic fields. Methods
A first experiment was conducted to find out if 14 days of chronic unpredictable mild stress caused oxidative unbalance in male Wistar rat’s brain. Catalase activity, reduced glutathione concentration, and lipoperoxidation were measured in cerebrum and cerebellum. In the second experiment, we investigate the effects of 7 days extremely low-frequency magnetic fields exposure on animals stressed and unstressed. Results The main results obtained were a significant increase in the catalase activity and reduced glutathione concentration on the cerebrum of animals where the chronic unpredictable mild stress were suspended at day 14 and then exposed 7 days to extremely low-frequency magnetic fields. Interestingly, the same treatment decreases the lipoperoxidation in the cerebrum. The stressed animals that received concomitant extremely low frequency magnetic fields exposure showed an oxidative status like stressed animals by 21 days. Thus, no changes were observed on the chronic unpredictable mild stress induced-oxidative damage in the rat’s cerebrum by the extremely low-frequency magnetic field exposure together with chronic unpredictable mild stress. Conclusions The extremely low-frequency electromagnetic field exposure can partially restore the cerebrum antioxidant system of previously stressed animals.
Collapse
Affiliation(s)
- Leticia R Quesnel-Galván
- Laboratorio de Bioelectromagnetismo, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cuidad Universitaria, C.P.04510, Mexico City, Mexico
| | - Patricia V Torres-Durán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cuidad Universitaria, C.P.04510, Mexico City, Mexico
| | - David Elías-Viñas
- Departamento de Ingeniería Eléctrica, Sección de Bioelectrónica, CINVESTAV, IPN, C.P.07360, Mexico City, Mexico
| | - Leticia Verdugo-Díaz
- Laboratorio de Bioelectromagnetismo, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Cuidad Universitaria, C.P.04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1475-1485. [PMID: 32200461 DOI: 10.1007/s00210-020-01855-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/13/2020] [Indexed: 01/15/2023]
Abstract
The present work was to examine a combination of therapy for a low dose of cisplatin and a magnetic field (MF) on Ehrlich carcinoma-bearing mice. In this study, a total of 50 BALB/C female mice were equally distributed into five groups. Mice from the control group did not receive MF or cisplatin. The low and high dose cisplatin groups were injected intraperitoneal (i.p.) with 3 and 6 mg/kg cisplatin, respectively, on the experimental days (1, 4, and 8). Mice group of cisplatin + MF was injected with a low dose of cisplatin followed by MF exposure (50 Hz, 50 mT), and the MF group was exposed to MF only. The impact of MF and cisplatin on the tumor and kidney were evaluated by measuring superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels, DNA injury (comet assay), histopathological investigation of tissues, and tumor progress. The results suggested that the combination of a low dose of cisplatin with MF was significantly elevated in MDA levels, reduced SOD activity, and GSH levels. Furthermore, it caused a rise in comet parameters and inhibition in tumor growth. These results showed that MF enhances the therapeutic efficacy of low cisplatin doses and reduces nephrotoxicity.
Collapse
|
6
|
Sampson C, Keens RH, Kattnig DR. On the magnetosensitivity of lipid peroxidation: two- versus three-radical dynamics. Phys Chem Chem Phys 2019; 21:13526-13538. [PMID: 31210238 DOI: 10.1039/c9cp01746a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We show that, contrary to claims in the literature, lipid peroxides, the dominant chain carriers of the autoxidation process, have associated non-zero hyperfine coupling interactions. This suggests that their recombination could, in principle, be magnetosensitive due to the RPM. While the RPM indeed goes a long way to explaining magnetosensitivity in these systems, we show that the simultaneous interaction of three peroxyl radicals via the D3M can achieve larger magnetic field effects (MFE), even if the third radical is remote from the recombining radical pair. For randomly oriented three-radical systems, the D3M induces a low-field effect comparable to that of the RPM. The mechanism furthermore immunizes the spin dynamics to the presence of large exchange coupling interactions in the recombining radical pair, thereby permitting much larger MFE at magnetic field intensities comparable to the geomagnetic field than would be expected for the RPM. Based on these characteristics, we suggest that the D3M could be particularly relevant for MFE at low fields, provided that the local radical concentration is sufficient to allow for three-spin radical correlations. Eventually, our observations suggest that MFEs could intricately depend on radical concentration and larger effects could ensue under conditions of oxidative stress.
Collapse
Affiliation(s)
- Chris Sampson
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
| | | | | |
Collapse
|
7
|
Alchalabi ASH, Rahim H, AbdulMalek MF, Aklilu E, Aziz AR, Ronald SH, Khan MA. Micronuclei Formation and 8-Hydroxy-2-Deoxyguanosine Enzyme Detection in Ovarian Tissues After Radiofrequency Exposure at 1800 MHz in Adult Sprague–Dawley Rats. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Vadalà M, Morales-Medina JC, Vallelunga A, Palmieri B, Laurino C, Iannitti T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med 2016; 5:3128-3139. [PMID: 27748048 PMCID: PMC5119968 DOI: 10.1002/cam4.861] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Available treatments are associated with numerous side effects and only a low percentage of patients achieve complete remission. Therefore, there is a strong need for new therapeutic strategies. In this regard, pulsed electromagnetic field (PEMF) therapy presents several potential advantages including non-invasiveness, safety, lack of toxicity for non-cancerous cells, and the possibility of being combined with other available therapies. Indeed, PEMF stimulation has already been used in the context of various cancer types including skin, breast, prostate, hepatocellular, lung, ovarian, pancreatic, bladder, thyroid, and colon cancer in vitro and in vivo. At present, only limited application of PEMF in cancer has been documented in humans. In this article, we review the experimental and clinical evidence of PEMF therapy discussing future perspectives in its use in oncology.
Collapse
Affiliation(s)
- Maria Vadalà
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, Surgical Clinic, University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Ghanbari AA, Shabani K, Mohammad Nejad D. Protective Effects of Vitamin E Consumption against 3MT Electromagnetic Field Effects on Oxidative Parameters in Substantia Nigra in Rats. Basic Clin Neurosci 2016; 7:315-322. [PMID: 27872692 PMCID: PMC5102560 DOI: 10.15412/j.bcn.03070404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Introduction: Electromagnetic fields (EMFs) can influence the biological system by the formation of free radicals in cells. The EMFs are able to deteriorate defense system against free radicals that leads to oxidative stress (OS). Lipid peroxidation process (LPO) is an index of oxidative stress, and the Malandialdehyde (MDA) is the final product of LPO. Vitamin E is the most important antioxidant which inhibits the LPO process. The aim of this study was to evaluate the effects of 3MT EMF exposure on oxidative stress parameters in substantia nigra and the role of vitamin E in reducing oxidative stress and preventing of LPO process. Methods: 40 male Wistar rats were randomly divided into 4 groups: 1) Control group: received standard food without exposure to EMF and without consumption of vitamin E, 2) Experimental group 1: was exposed to EMF (3MT) 4 h/day for 50 days, 3) The experimental group 2: received 200 mg/kg vitamin E with gavage every day and also was exposed to EMF (3MT) 4 h/day for 50 days, 4) Sham group: received water with gavage for 50 days. Results: A significant increase in MDA levels and Glutation peroxidase (GSH-Px) activity of the substantia nigra following 50 days exposure to EMF was detected, but the superoxide dismutase (SOD) activity was decreased. Exposure did not change total antioxidant capacity (TAC) levels in plasma. Vitamin E treatment significantly prevented the increase of the MDA levels and GSHPx activity and also prevented the decrease of SOD activity in tissue but did not alter TAC levels. The GSH-Px activity increased because the duration and intensity of exposure were not enough to decrease it. Conclusion: We demonstrated two important findings; that 50 days exposure to 3 MT electromagnetic field caused oxidative stress by increasing the levels of MDA, and decreasing SOD activity in the substantia nigra; and that treatment with the vitamin E significantly prevented the oxidative stress and lipid peroxidation.
Collapse
Affiliation(s)
- Ahmad Ali Ghanbari
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Shabani
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Mohammad Nejad
- Drug Applied Research Center, Medical Research and Development Complex, Department of Anatomy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 2014; 9:e88921. [PMID: 24586442 PMCID: PMC3929496 DOI: 10.1371/journal.pone.0088921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/16/2014] [Indexed: 11/04/2022] Open
Abstract
Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Lidija Radenović
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zlatko Prolić
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Branka Janać
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Sirav B, Sezgin G, Seyhan N. Extremely low-frequency magnetic fields of transformers and possible biological and health effects. Electromagn Biol Med 2013; 33:302-6. [PMID: 24131394 DOI: 10.3109/15368378.2013.834447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.
Collapse
|
12
|
Age-Dependent Effects of ELF-MF on Oxidative Stress in the Brain of Mongolian Gerbils. Cell Biochem Biophys 2013; 66:513-21. [DOI: 10.1007/s12013-012-9498-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Cho SI, Nam YS, Chu LY, Lee JH, Bang JS, Kim HR, Kim HC, Lee YJ, Kim HD, Sul JD, Kim D, Chung YH, Jeong JH. Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics 2012; 33:568-74. [PMID: 22496058 DOI: 10.1002/bem.21715] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 02/05/2012] [Indexed: 11/10/2022]
Abstract
Our previous study has shown that an extremely low-frequency magnetic field (ELF-MF) induces nitric oxide (NO) synthesis by Ca(2+) -dependent NO synthase (NOS) in rat brain. The present study was designed to confirm that ELF-MF affects neuronal NOS (nNOS) in several brain regions and to investigate the correlation between NO and nNOS activation. The exposure of rats to a 2 mT, 60 Hz ELF-MF for 5 days resulted in increases of NO levels in parallel with cGMP elevations in the cerebral cortex, striatum, and hippocampus. Cresyl violet staining and electron microscopic evaluation revealed that there were no significant differences in the morphology and number of neurons in the cerebral cortex, striatum, and hippocampus. Differently, the numbers of nNOS-immunoreactive (IR) neurons were significantly increased in those cerebral areas in ELF-MF-exposed rats. These data suggest that the increase in NO could be due to the increased expression and activation of nNOS in cells. Based on NO signaling in physiological and pathological states, ELF-MF created by electric power systems may induce various physiological changes in modern life.
Collapse
Affiliation(s)
- Sung In Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Martínez-Sámano J, Torres-Durán PV, Juárez-Oropeza MA, Verdugo-Díaz L. Effect of Acute Extremely Low Frequency Electromagnetic Field Exposure on the Antioxidant Status and Lipid Levels in Rat Brain. Arch Med Res 2012; 43:183-9. [DOI: 10.1016/j.arcmed.2012.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
15
|
Zeng L, Ji X, Zhang Y, Miao X, Zou C, Lang H, Zhang J, Li Y, Wang X, Qi H, Ren D, Guo G. MnSOD expression inhibited by electromagnetic pulse radiation in the rat testis. Electromagn Biol Med 2011; 30:205-18. [DOI: 10.3109/15368378.2011.587929] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Wavelet analysis of acute effects of static magnetic field on resting skin blood flow at the nail wall in young men. Microvasc Res 2011; 82:277-83. [DOI: 10.1016/j.mvr.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/14/2011] [Accepted: 03/16/2011] [Indexed: 11/22/2022]
|
17
|
Morabito C, Guarnieri S, Fanò G, Mariggiò MA. Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cell Physiol Biochem 2011; 26:947-58. [PMID: 21220925 DOI: 10.1159/000324003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The purpose of this study was to provide information about the in vitro neuritogenesis during cell exposure to extremely low frequency electromagnetic fields (ELF-EMFs) of different intensities and durations using pheochromocytoma-derived cell line (PC12 cells) as neuronal model. METHODS Proliferative rates and neuritogenesis were tested by colorimetric assay and morphological analysis, respectively; reactive oxygen species (ROS) levels and intracellular Ca(2+) variations monitored using single cell videomicroscopy. RESULTS The long-lasting ELF-EMF exposure (0.1-1.0 mT) did not appear to significantly affect the biological response (proliferation and neuritogenesis). However, during the acute ELF-EMF exposure (30 min), in undifferentiated PC12 cells, there were increased ROS levels and decreased catalase activity, that, conversely, resulted increased after chronic exposure (7 days) at 1.0 mT. Acute exposure (0.1-1.0 mT) affected the spontaneous intracellular Ca(2+) variations in undifferentiated cells, in which basal intracellular Ca(2+) resulted increased after chronic exposure. In addition acute exposure affected cell response to a depolarizing agent, while basal membrane potential was not changed. CONCLUSION Even if further studies remain necessary to identify the ROS/intracellular Ca(2+)cross-talking pathway activated by ELF-EMF exposure, we support the hypothesis that ROS and Ca(2+) could be the cellular "primum movens" of the ELF-EMF induced effects on biological systems.
Collapse
Affiliation(s)
- Caterina Morabito
- Department Neuroscience and Imaging-Centro Studi sull'Invecchiamento (CeSI), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | | | | |
Collapse
|
18
|
Sirav B, Tuysuz MZ, Canseven AG, Seyhan N. Evaluation of Non Ionizing Radiation Around the Dielectric Heaters and Sealers: A Case Report. Electromagn Biol Med 2010; 29:144-53. [DOI: 10.3109/07435800.2010.505149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Martínez-Sámano J, Torres-Durán PV, Juárez-Oropeza MA, Elías-Viñas D, Verdugo-Díaz L. Effects of acute electromagnetic field exposure and movement restraint on antioxidant system in liver, heart, kidney and plasma of Wistar rats: A preliminary report. Int J Radiat Biol 2010; 86:1088-94. [DOI: 10.3109/09553002.2010.501841] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|