1
|
Barahona MJ, Llanos P, Recabal A, Escobar-Acuña K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepúlveda FJ, Araneda RC, García-Robles MA. Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 2017; 66:592-605. [PMID: 29178321 PMCID: PMC5814884 DOI: 10.1002/glia.23267] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Glucose is a key modulator of feeding behavior. By acting in peripheral tissues and in the central nervous system, it directly controls the secretion of hormones and neuropeptides and modulates the activity of the autonomic nervous system. GLUT2 is required for several glucoregulatory responses in the brain, including feeding behavior, and is localized in the hypothalamus and brainstem, which are the main centers that control this behavior. In the hypothalamus, GLUT2 has been detected in glial cells, known as tanycytes, which line the basal walls of the third ventricle (3V). This study aimed to clarify the role of GLUT2 expression in tanycytes in feeding behavior using 3V injections of an adenovirus encoding a shRNA against GLUT2 and the reporter EGFP (Ad‐shGLUT2). Efficient in vivo GLUT2 knockdown in rat hypothalamic tissue was demonstrated by qPCR and Western blot analyses. Specificity of cell transduction in the hypothalamus and brainstem was evaluated by EGFP‐fluorescence and immunohistochemistry, which showed EGFP expression specifically in ependymal cells, including tanycytes. The altered mRNA levels of both orexigenic and anorexigenic neuropeptides suggested a loss of response to increased glucose in the 3V. Feeding behavior analysis in the fasting‐feeding transition revealed that GLUT2‐knockdown rats had increased food intake and body weight, suggesting an inhibitory effect on satiety. Taken together, suppression of GLUT2 expression in tanycytes disrupted the hypothalamic glucosensing mechanism, which altered the feeding behavior.
Collapse
Affiliation(s)
- María J Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar-Acuña
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Chile
| | - Fernando J Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Chile.,Departamento de Ciencias Biológica Universidad Andrés Bello, Concepción, Chile
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, Maryland
| | - María A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Liu JS, Wang JH, Zhou J, Tang XH, Xu L, Shen T, Wu XY, Hong Z. Enhanced brain delivery of lamotrigine with Pluronic(®) P123-based nanocarrier. Int J Nanomedicine 2014; 9:3923-35. [PMID: 25152622 PMCID: PMC4140705 DOI: 10.2147/ijn.s62263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND P-glycoprotein (P-gp) mediated drug efflux across the blood-brain barrier (BBB) is an important mechanism underlying poor brain penetration of certain antiepileptic drugs (AEDs). Nanomaterials, as drug carriers, can overcome P-gp activity and improve the targeted delivery of AEDs. However, their applications in the delivery of AEDs have not been adequately investigated. The objective of this study was to develop a nano-scale delivery system to improve the solubility and brain penetration of the antiepileptic drug lamotrigine (LTG). METHODS LTG-loaded Pluronic(®) P123 (P123) polymeric micelles (P123/LTG) were prepared by thin-film hydration, and brain penetration capability of the nanocarrier was evaluated. RESULTS The mean encapsulating efficiency for the optimized formulation was 98.07%; drug-loading was 5.63%, and particle size was 18.73 nm. The solubility of LTG in P123/LTG can increase to 2.17 mg/mL, making it available as a solution. The in vitro release of LTG from P123LTG presented a sustained-release property. Compared with free LTG, the LTG-incorporated micelles accumulated more in the brain at 0.5, 1, and 4 hours after intravenous administration in rats. Pretreatment with systemic verapamil increased the rapid brain penetration of free LTG but not P123/LTG. Incorporating another P-gp substrate (Rhodamine 123) into P123 micelles also showed higher efficiency in penetrating the BBB in vitro and in vivo. CONCLUSION These results indicated that P123 micelles have the potential to overcome the activity of P-gp expressed on the BBB and therefore show potential for the targeted delivery of AEDs. Future studies are necessary to further evaluate the appropriateness of the nanocarrier to enhance the efficacy of AEDs.
Collapse
Affiliation(s)
- Jian-Sheng Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian-Hong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Xing-Hua Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lan Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Xun-Yi Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhen Hong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Zennaro C, Rastaldi MP, Pascolo L, Stebel M, Trevisan E, Artero M, Tiribelli C, Di Maso V, Carraro M. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury. PLoS One 2013; 8:e66159. [PMID: 23840417 PMCID: PMC3688733 DOI: 10.1371/journal.pone.0066159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA). We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp) family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR) efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/toxicity
- Biological Transport/drug effects
- Cell Adhesion
- Cell Line, Tumor
- Cell Membrane Permeability
- Cell Proliferation
- Cell Survival/drug effects
- Cyclosporine/pharmacology
- Cytoprotection
- Gene Expression/drug effects
- Humans
- Kidney Glomerulus/cytology
- Kidney Glomerulus/drug effects
- Male
- Organic Anion Transporters/antagonists & inhibitors
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- Penicillin G/metabolism
- Penicillin G/pharmacology
- Podocytes/drug effects
- Podocytes/metabolism
- Puromycin Aminonucleoside/metabolism
- Puromycin Aminonucleoside/toxicity
- Rats
- Rats, Sprague-Dawley
- Serum Albumin/metabolism
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico & Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| | - Lorella Pascolo
- IRCCS Burlo Garofolo Istituto per la Cura a Carattere Scientifico Materno Infantile, Trieste, Italy
| | - Marco Stebel
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Elisa Trevisan
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Mary Artero
- Azienda Ospedaliero-Universitaria Ospedali di Riuniti di Trieste, Trieste, Italy
| | - Claudio Tiribelli
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
- Liver Research Center, AREA Science Park, Trieste, Italy
| | - Vittorio Di Maso
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
4
|
Nuclear factor-kappa B activity regulates brain expression of P-glycoprotein in the kainic acid-induced seizure rats. Mediators Inflamm 2011; 2011:670613. [PMID: 21403895 PMCID: PMC3043292 DOI: 10.1155/2011/670613] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/24/2010] [Accepted: 01/08/2011] [Indexed: 01/16/2023] Open
Abstract
This study was aimed to investigate the effect of NF-κB activity on the seizure susceptibility, brain damage, and P-gp expression in kainic acid- (KA-) induced seizure rats. Male SD rats were divided into saline control group (NS group), KA induced epilepsy group (EP group), and epilepsy group intervened with NF-κB inhibitor-pyrrolidine dithiocarbamate salt (PDTC group) or with dexamethasone (DEX group). No seizures were observed in the rats of NS group. Compared with NS group, increased P-gp expression and NF-κB activation in the rat brain of the EP group were observed after KA micro-injection. Both PDTC and DEX pre-treatment significantly increased the latency to grade III or V seizure onset compared to EP group but failed to show neuron-protective effect as the number of survival neurons didn't significantly differ from that in EP group. Furthermore, PDTC pre-treatment significantly decreased P-gp expression along with NF-κB activation in the hippocampus CA3 area and amygdala complex of rats compared with the EP group, implying that NF-κB activation involved in the seizure susceptibility and seizure induced brain P-gp over-expression. Additionally, DEX pre-treatment only decreased P-gp expression level without inhibition of NF-κB activation, suggesting NF-κB independent pathway may also participate in regulating seizure induced P-gp over-expression.
Collapse
|
5
|
Wang K, Cheng L, Liang Y, Liu D, Li K, Wang P. Adenovirus-mediated delivery of shRNA against bFGF mRNA suppresses growth of cultured human primary prostatic stromal cells. Mol Biol Rep 2010; 38:971-6. [DOI: 10.1007/s11033-010-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/21/2010] [Indexed: 11/28/2022]
|