1
|
Aghajanov MI. Armen Anushavanovich Galoyan and His Scientific School. NEUROCHEM J+ 2022. [DOI: 10.1134/s181971242204002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
2
|
Galoian K, Dahl V, Perez A, Denny C, Becker B, Sedani A, Moran A, Martinez D, Hoyt A, Brown J. PRP-1, a toll-like receptor ligand, upregulates the unfolded protein response in human chondrosarcoma cells. Cancer Treat Res Commun 2022; 33:100644. [PMID: 36368296 DOI: 10.1016/j.ctarc.2022.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Previous studies showed that proline-rich polypeptide (PRP-1) is a ligand for innate immunity toll-like receptors (TLR), and an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1) which induces the death of chondrosarcoma cancer stem cells (CSC). The aim of this study was to investigate the effect of PRP-1 on the regulation of unfolded protein response (UPR) in human chondrosarcoma cells. MATERIALS AND METHODS Lysates were prepared from a monolayer (bulk or ALDHhigh population), or spheroids chondrosarcoma cell cultures and treated with PRP-1 or control, followed by protein levels quantification by western blotting and mRNA expression by RT-qPCR of protein-RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1α), and X-box binding protein (XBP1). RESULTS The PRP-1 has been shown to increase the expression of PERK, eIF2α, ATF4, CHOP, ATF6, IRE1α, and XBP1, on both protein and mRNA levels. CONCLUSION PRP-1 activated UPR branches in monolayer, spheroid, and stem cell populations of human chondrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Victoria Dahl
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andres Perez
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carina Denny
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Beatrice Becker
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil Sedani
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alexandra Moran
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Martinez
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aaron Hoyt
- Loyola University Medical Centre, Chicago, IL, United States
| | - Jeffrey Brown
- Department of Orthopedics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
3
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
4
|
Granger CJ, Hoyt AK, Moran A, Becker B, Sedani A, Saigh S, Conway SA, Brown J, Galoian K. Cancer stem cells as a therapeutic target in 3D tumor models of human chondrosarcoma: An encouraging future for proline rich polypeptide‑1. Mol Med Rep 2020; 22:3747-3758. [PMID: 32901865 PMCID: PMC7533489 DOI: 10.3892/mmr.2020.11480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chondrosarcoma is a malignant bone neoplasm that is refractory to chemotherapy and radiation. With no current biological treatments, mutilating surgical resection is the only effective treatment. Proline rich polypeptide 1 (PRP-1), which is a 15-amino acid inhibitor of mammalian target of rapamycin complex-1 (mTORC1), has been indicated to exert cytostatic and immunomodulatory properties in human chondrosarcoma cells in a monolayer. The aim of the present study was to evaluate the effects of PRP-1 on an in vitro 3D chondrosarcoma tumor model, known as spheroids, and on the cancer stem cells (CSCs) which form spheroids. JJ012 cells were cultured and treated with PRP-1. An ALDEFLUOR™ assay was conducted (with N,N-diethylaminobenzaldehyde as the negative control) to assess aldehyde dehydrogenase (ALDH) activity (a recognized CSC marker), and bulk JJ012, ALDHhigh and PRP-1 treated ALDHlow cells were sorted using flow cytometry. Colony formation and spheroid formation assays of cell fractions, including CSCs, were used to compare the PRP-1-treated groups with the control. CSCs were assessed for early apoptosis and cell death with a modified Annexin V/propidium iodide assay. Western blotting was used to identify mesenchymal stem cell markers (STRO1, CD44 and STAT3), and spheroid self-renewal assays were also conducted. A clonogenic dose-response assay demonstrated that 20 µg/ml PRP-1 was the most effective dose for reducing colony formation capacity. Furthermore, CSC spheroid growth was significantly reduced with increasing doses of PRP-1. Annexin V analysis demonstrated that PRP-1 induced CSC cell death, and that this was not attributed to apoptosis or necrosis. Western blot analysis confirmed the expression of mesenchymal markers, and the spheroid self-renewal assay confirmed the presence of self-renewing CSCs. The results of the present study demonstrate that PRP-1 eliminates anchorage independent CSC growth and spheroid formation, indicating that PRP-1 likely inhibits tumor formation in a murine model. Additionally, a decrease in non-CSC bulk tumor cells indicates an advantageous decline in tumor stromal cells. These findings confirm that PRP-1 inhibits CSC proliferation in a 3D tumor model which mimics the behavior of chondrosarcoma in vivo.
Collapse
Affiliation(s)
- Caroline J Granger
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aaron K Hoyt
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexandra Moran
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Beatrice Becker
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anil Sedani
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Shannon Saigh
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sheila A Conway
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey Brown
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karina Galoian
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Morpho‑functional study of the hypothalamic proline‑rich polypeptide apoptotic activity against mouse Ehrlich ascites carcinoma. Oncol Rep 2020; 44:196-212. [PMID: 32377754 PMCID: PMC7251776 DOI: 10.3892/or.2020.7604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
A new type of bioactive polypeptides of the neurosecretory hypothalamus called proline‑rich peptides (PRPs), which are isolated from bovine neurosecretory granules of the neurohypophysis, are synthesized in the form of a common precursor protein (neurophysin vasopressin‑associated glycoprotein). Proline‑rich polypetide 1 (PRP‑1; also known as galarmin) is comprised of 15 amino acids residues, and has been suggested to possess anti‑neurodegenerative, immunoregulatory, hematopoietic, antimicrobial and antitumor properties. The cytostatic, antiproliferative effect of PRP‑1 was demonstrated in the human chondrosarcoma JJ012 and triple negative breast carcinoma MDA MB 231 cell lines. PRP‑1 action is disease and tissue specific. To further explore the antitumorigenic and possible cytotoxic effects of PRP‑1, a morpho‑functional study on the effect of PRP‑1 on a mouse Ehrlich ascites carcinoma (EAC) model was conducted. The PRP‑1‑induced morphological features of EAC cells confirmed the apoptotic nature of PRP‑1, as manifested by cell shrinkage, membrane blebbing, chromosome condensation (pyknosis) and nuclear fragmentation (karyorrhexis). The effect of PRP‑1 on the number of tumor cells incubated for 24 h and their viability in trypan blue‑stained samples lead to a 44% reduction in the number of viable cells on day 11 post‑inoculation vs. 22% inhibition of viable cells after PRP‑1 treatment (0.1 µg/ml) on day 7 post‑inoculation. Apoptosis experiments using an Annexin V‑cyanine 3 apoptosis detection kit indicated that 24 h incubation with 0.1 µg/ml PRP‑1 caused a significant increase in the number of apoptotic cells, reaching 50.33%, compared to 8.33% in the sample control on day 7 post‑inoculation.
Collapse
|
6
|
Galoian K, Luo S, Patel P. Analysis of IL6-protein complexes in chondrosarcoma. Biomed Rep 2018; 8:91-98. [PMID: 29399342 DOI: 10.3892/br.2017.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
Cytokines produced in the tumour microenvironment serve important roles in cancer pathogenesis or in the supression of disease progression. Metastatic chondrosarcoma is a cancer of the cartilage, and our group previously reported from a human ELISA assay that interleukin 6 (IL6) expression in JJ012 chondrosarcoma cells was 86-fold lower than that in C28 chondrocytes, indicating its role as an anti-inflammatory and anti-tumorigenic factor. Additionally, to the best of our knowledge, the study was the first to demonstrate downregulation of IL6 in a human chondrosarcoma cell line. To fully elucidate the effect of this IL6 downregulation, it is important to identify protein complexes and components that bind IL6 and potentially affect its gene expression directly or indirectly. To investigate IL6-protein interactions leading to these differences in IL6 expression, the current study performed a gel retardation electrophoretic mobility shift assay (EMSA), followed by 2D gel phoresis, in-gel trypsin digestion and proteomic mass spectral analysis. The results indicated a presence of ubiquitination enzymes in C28 chondrocytes, while none were identified in JJ012 chondrosarcoma cells. While it seems counterintuitive, it may be that the absence of ubiquitination of certain factors leads to the downregulation of IL6 expression in human chondrosarcoma. Therefore, dysregulated ubiquitination may be among the possible mechanisms for the markedly reduced IL6 expression in chondrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| | - Shihua Luo
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| | - Parthik Patel
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Galoian K, Patel P. Epigenetic control of cancer by neuropeptides. Biomed Rep 2016; 6:3-7. [PMID: 28123699 DOI: 10.3892/br.2016.804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides act as neurohormones, neurotransmitters and/or neuromodulators. Neuropeptides maintain physiological homeostasis and are paramount in molecular mechanisms of disease progression and regulation, including in cancer. Neuropeptides, by their definition, originate and are secreted from the neuronal cells, they are able to signal to neighboring cells or are released into the blood flow, if they act as neurohormones. The majority of neuropeptides exert their functions through G protein-coupled receptors, with certain exceptions. Although previous studies indicate that neuropeptides function in supporting proliferation of malignant cells in many types of solid tumor, the antitumorigenic action of the neuropeptides and their receptors, for example, in gastric cancers and chondrosarcoma, were also reported. It is known that epigenetically modified chromatin regulates molecular mechanisms involved in gene expression and malignant progression. The epigenetic modifications are genetically heritable, although they do not cause changes in DNA sequence. DNA methylation, histone modifications and miRNA expression are subject to those modifications. While there is substantial data on epigenetic regulation of neuropeptides, the epigenetic control of cancer by neuropeptides is considered to be uncharted territory. The aim of the current review is to describe the involvement of neuropeptides in the epigenetic machinery of cancer based on data obtained from our laboratory and from other authors.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Parthik Patel
- Department of Orthopedics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Galoian K, Luo S, Qureshi A, Patel P, Price R, Morse AS, Chailyan G, Abrahamyan S, Temple HT. Effect of cytostatic proline rich polypeptide-1 on tumor suppressors of inflammation pathway signaling in chondrosarcoma. Mol Clin Oncol 2016; 5:618-624. [PMID: 27900099 DOI: 10.3892/mco.2016.1010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Cytokines produced in the tumour microenvironment exert an important role in cancer pathogenesis and in the inhibition of disease progression. Cancer of the cartilage is termed metastatic chondrosarcoma; however, the signaling events resulting in mesenchymal cell transformation to sarcoma have yet to be fully elucidated. The present study aimed to characterize the cytokine expression profile in the human JJ012 chondrosarcoma cell line, as well as the effect of cytostatic proline-rich polypeptide-1 (PRP-1). Western blot experiments demonstrated that the levels of suppressor of cytokine signaling 3 (SOCS3) were upregulated in chondrocytes compared with chondrosarcoma cells. Addition of PRP-1 restored the expression of the tumor suppressors, SOCS3 and ten-eleven-translocation methylcytosine dioxygenase 1 and 2 (TET1/2), in a dose-responsive manner. It is known that methylation of histone H3K9 was eliminated from the promoters of the inflammation-associated genes. PRP-1 inhibited H3K9 demethylase activity with an IC50 (concentration required to give half-maximal inhibition) value of 3.72 µg/ml in the chondrosarcoma cell line. Data obtained from ELISA experiments indicated that the expression of interleukin-6 (IL-6) in chondrosarcoma cells was 86-fold lower compared with that in C28 chondrocytes. In the present study, a 53-fold downregulation of IL-6 expression in co-culture of chondrosarcoma cells and C28 chondrocytes was identified as well. Downregulation of IL-6 expression has been documented in numerous other tumor types, although the reasons for this have not been fully established. In chondrosarcoma, IL-6 manifests itself as an anti-inflammatory agent and, possibly, as an anti-tumorigenic factor. To explore protein-DNA interactions leading to such differences, a gel-shift chemiluminescent assay was performed. Gel shifts were observed for chondrosarcoma and chondrocytes in the lanes that contained nuclear cell extract and oligo-IL-6 DNA. Notably, the DNA-protein complexes in C28 chondrocytes were markedly larger compared with those in chondrosarcoma cells. The mechanisms that underpin such differences, and characterization of the interacting proteins, remain to be fully elucidated.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shihua Luo
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Parthik Patel
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Price
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ashlyn S Morse
- Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Gor Chailyan
- Buniatian Institute of Biochemistry Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Silva Abrahamyan
- Buniatian Institute of Biochemistry Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - H T Temple
- Center for Translational Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
9
|
Galoian K, Qureshi A, D'Ippolito G, Schiller PC, Molinari M, Johnstone AL, Brothers SP, Paz AC, Temple HT. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol 2015; 47:465-72. [PMID: 26094604 PMCID: PMC4501658 DOI: 10.3892/ijo.2015.3054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human chondrosarcoma JJ012 cell line, compared to chondrocytes culture. In this study we hypothesized the existence and regulation of a functional marker in cancer stem cells, correlated to peptides antiproliferative activity. Experimental results indicated that among significantly downregulated miRNA after PRP-1treatment was miRNAs 302c*. This miRNA is a part of the cluster miR302-367, which is stemness regulator in human embryonic stem cells and in certain tumors, but is not expressed in adult hMSCs and normal tissues. PRP-1 had strong inhibitory effect on viability of chondrosarcoma and multilineage induced multipotent adult cells (embryonic primitive cell type). Unlike chondrosarcoma, in glioblastoma, PRP-1 does not have any inhibitory activity on cell proliferation, because in glioblastoma miR-302-367 cluster plays an opposite role, its expression is sufficient to suppress the stemness inducing properties. The observed correlation between the antiproliferative activity of PRP-1 and its action on downregulation of miR302c explains the peptides opposite effects on the upregulation of proliferation of adult mesenchymal stem cells, and the inhibition of the proliferation of human bone giant-cell tumor stromal cells, reported earlier. PRP-1 substantially downregulated the miR302c targets, the stemness markers Nanog, c-Myc and polycomb protein Bmi-1. miR302c expression is induced by JMJD2-mediated H3K9me2 demethylase activity in its promoter region. JMJD2 was reported to be a positive regulator for Nanog. Our experimental results proved that PRP-1 strongly inhibited H3K9 activity comprised of a pool of JMJD1 and JMJD2. We conclude that inhibition of H3K9 activity by PRP-1 leads to downregulation of miR302c and its targets, defining the PRP-1 antiproliferative role.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gianluca D'Ippolito
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paul C Schiller
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marco Molinari
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea L Johnstone
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana C Paz
- Division of Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - H T Temple
- Department of Orthopaedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Galoian K, Qureshi A, Wideroff G, Temple HT. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol Clin Oncol 2014; 3:171-178. [PMID: 25469290 DOI: 10.3892/mco.2014.445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gina Wideroff
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - H T Temple
- University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
11
|
Regulation of onco and tumor suppressor MiRNAs by mTORC1 inhibitor PRP-1 in human chondrosarcoma. Tumour Biol 2013; 35:2335-41. [PMID: 24178909 DOI: 10.1007/s13277-013-1309-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023] Open
Abstract
Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. This study aimed to reveal the comparative analysis of miRNAs and their targets in human JJ012 chondrosarcoma cell line between control and experimental samples, treated with mTORC1 inhibitor, cytostatic antiproliferative proline-rich polypeptide (PRP-1). Examination of tumor-specific microRNA expression profiles has revealed widespread deregulation of these molecules in diverse cancers. It was reported that microRNAs can function as novel biomarkers for disease diagnostics and therapy, as well as a novel class of oncogenes and tumor suppressor genes. mTORC 1 inhibitor PRP-1 caused significant upregulation of tumor suppressors, such as miR20a, miR125b, and miR192; and downregulation of onco miRNAs, miR509-3p, miR589, miR490-3p, miR 550 in human chondrosarcoma JJ012 cell line.
Collapse
|
12
|
mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol 2012; 33:885-90. [PMID: 22246604 DOI: 10.1007/s13277-011-0315-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/29/2011] [Indexed: 12/17/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) serine threonine kinase is the enzyme that regulates cancer cell growth by altering nutrient supplies to cancer cells. The neuropeptide (proline-rich peptide 1 (PRP-1)), galarmin, produced by the brain neurosecretory cells is a mTOR kinase inhibitor with powerful 80% antiproliferative cytostatic effect in a high-grade chondosarcoma and other mesenchymal tumors. However, the negative feedback loop of phosphatidylinositol 3 kinase-Protein kinase B (PKB), PI3K-AKT and PI3K-rat sarcoma (RAS)-mitogen-activated protein kinase (MAPK) activation is well documented for mTOR inhibitors. This study explored the involvement of those loops in drug resistance after the treatment with mTOR complex 1 (mTORC1) inhibitor, PRP-1. Multidrug resistance assay (MDR) demonstrated that this cytokine did not inhibit permeability glycoprotein-mediated MDR in chondrosarcoma. Phospho-MAPK array in human chondrosarcoma cell line treated with galarmin (10 μg/ml,) showed a strong upregulation of phosphorylated glycogen synthase kinase 3β (GSK3β) via activation of PI3K-AKT and MAPK feedback loops. Such GSK3β inactivation leads to β-catenin accumulation that entails drug resistance. The ability of cells to metastasize is reflected in their capacity to adhere to extracellular matrix and endothelium. Laminin cell adhesion assay demonstrated that PRP-1 in the same concentrations that inhibit mTOR kinase inhibited JJ012 chondrosarcoma cell adhesion. The neuropeptide did not have any effect on the expression of total focal adhesion kinase and its phosphorylated form. Thus, it was not accompanied by total HAT downregulation and total HDAC upregulation. Combinatorial treatments of PRP-1 with MAPK and PI3K/AKT inhibitors most probably will lead to full cytotoxicity overcoming drug resistance.
Collapse
|
13
|
Galoian KA, Temple TH, Galoyan A. Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER-) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors. Tumour Biol 2011; 32:745-51. [PMID: 21494810 DOI: 10.1007/s13277-011-0176-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/03/2011] [Indexed: 12/18/2022] Open
Abstract
Activation of the PI3K-Akt-mTOR pathway is implicated both in the establishment of tumors and as well as a target for therapy in many types of solid malignancy, its blockade represents an opportunity to improve outcomes in patients with tumors that are associated with poor prognosis. Our experimental data indicates that proline-rich polypeptide-1 (PRP-1, galarmin) is immunomodulator cytokine, produced by hypothalamic neurosecretory cells and exerts its antiproliferative effect on the tumor cells of mesenchymal origin via inhibiting mTOR kinase activity and repressing cell cycle progression. The goal of these investigations was to elucidate the antiproliferative action of PRP-1 on the breast carcinoma cell line MDA 231 (ER-) and to compare PRP-1 action previously reported on other mesenchymal tumors. These experiments confirmed maximum inhibition of cell growth at 0.5 and 1 μg/ml PRP-1 (71% and 63%, respectively) and inhibition at 10 μg/ml of 44%. There was no inhibitory effect observed on luminal T47-D (ER+) cells. Videomicroscopy results demonstrated dividing cells in the cytokine-treated MDA 231 (ER-), suggesting that the cells were not in the state of dormancy. The flow cytometry experiments confirmed that PRP-1-treated cells were accumulated in S phase. No apoptosis, caspase activation, or senescence was detected after treatment with this cytokine. Experiments with mTOR with PRP-1 (10 μg/ml) indicated statistically significant 40% inhibition of mTOR kinase activity in immunoprecipitates of the MDA 231 (ER-) cell line. PRP-1 is a novel mTOR inhibitor with strong antiproliferative action in mesenchymal tumors mostly resistant to radiation and chemotherapy.
Collapse
Affiliation(s)
- Karina A Galoian
- Miller School of Medicine, University of Miami Health System, 1600 N.W 10th avenue, suite 8006 (R-2), Miami, FL 33136, USA.
| | | | | |
Collapse
|
14
|
Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by mTOR and cMyc inhibition in high grade chondrosarcoma. Neurochem Res 2011; 36:812-8. [PMID: 21243426 DOI: 10.1007/s11064-011-0406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 12/18/2022]
Abstract
This study aimed to further elucidate the molecular mechanisms of antiproliferative action of proline rich polypeptide 1 (PRP-1) cytokine, produced by neurosecretory cells of the hypothalamus to be considered as alternative adjuvant therapy for metastatic chondrosarcoma, which does not respond to chemotherapy or radiation and currently without any effective treatment. Rapid cell proliferation assay of human primary cultures from high grade chondrosarcoma patients biopsies and human chondrosarcoma JJ012 cell line indicated 50 and 80% inhibition in PRP-1 treated samples correspondingly. Videomicroscopy detected that despite the treatment there are still dividing cells, meaning that cells are not in the state of dormancy, rather PRP-1 repressed the cell cycle progression, exhibited cytostatic effect. The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine protein kinase that has a crucial role in a nutrient sensitive signaling pathway that regulates cell growth. Experiments with mTOR pathway after PRP-1 (10 μg/ml) treatment indicated statistically significant 30% inhibition of mTOR activity and its 56% inhibition in immunoprecipitates with PRP-1 concentrations effective for cell proliferation inhibition. Treatment with PRP- caused inhibition of mTOR and downstream target cMyc oncogenic transcription factor sufficient to trigger the cytostatic effect in high grade, but not in low grade chondrosarcomas. The fact that lower concentrations than 10 μg/ml peptide with cytostatic effect did not inhibit mTOR, but inhibited cMyc prompted us to assume that PRP-1 binds to two different receptors facilitating the antiproliferative effect.
Collapse
|
15
|
Simonyan GM, Galoian KA, Simonyan RM, Simonyan MA, Galoyan AA. Proline rich polypeptide (PRP-1) increases the superoxide-producing and ferrihemoglobin reducing activities of cytochrome B(558) isoforms from human lymphosarcoma tissue cells. Neurochem Res 2011; 36:739-45. [PMID: 21213045 DOI: 10.1007/s11064-010-0389-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2010] [Indexed: 11/28/2022]
Abstract
The two cytochromes (cyt) b(558) of acidic nature, one-95-100 kDa and another one, 60-70 kDa were isolated for the first time from the human's lymphosarcoma tissue cells using gel filtration and ion exchange chromatography. These hemoproteins possess NADPH dependent O(2)(-)-producing and ferrihemoglobin-reducing activities. The incubation of neuropeptide PRP-1 (5 μg) with cytochrome b(558), caused elevation of these activities. The gel filtration results indicated possible binding of PRP-1 to these cytochromes b(558). PRP-1 activated both NADPH dependent O(2)(-)-producing and ferriHb-reducing activities of the cyt b(1)(558) and cyt b(2)(558), obtained from human lymphosarcoma tissue cells. One can assume that PRP-1 associated with cyt b(558) on the surface of the tumor cells by increasing both NADPH dependent O(2)(-)-producing and ferriHb-reducing activities of cyt b(558), increases the oxidation- reduction status. Changing the oxidation-reduction status and oxygen homeostasis of the tumor cells by PRP-1 can serve as one of the possible explanation of antitumorigenic effect of this cytokine.
Collapse
Affiliation(s)
- G M Simonyan
- H. Buniatyan Institute of Biochemistry, National Academy of Sciences, 5/1 Paruir Sevak Str., Yerevan 0014, Republic of Armenia.
| | | | | | | | | |
Collapse
|