1
|
Charli A, Chang YT, Luo J, Palanisamy B, Malovic E, Riaz Z, Miller C, Samidurai M, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial stress disassembles nuclear architecture through proteolytic activation of PKCδ and Lamin B1 phosphorylation in neuronal cells: implications for pathogenesis of age-related neurodegenerative diseases. Front Cell Neurosci 2025; 19:1549265. [PMID: 40313592 PMCID: PMC12043892 DOI: 10.3389/fncel.2025.1549265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Mitochondrial dysfunction and oxidative stress are central to the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's and Huntington's diseases. Neurons, particularly dopaminergic (DAergic) ones, are highly vulnerable to mitochondrial stress; however, the cellular and molecular mechanisms underlying this vulnerability remain poorly understood. Previously, we demonstrated that protein kinase C delta (PKCδ) is highly expressed in DAergic neurons and mediates apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation. Herein, we further uncovered a key downstream molecular event of PKCδ signaling following mitochondrial dysfunction that governs neuronal cell death by dissembling nuclear architecture. Exposing N27 DAergic cells to the mitochondrial complex-1 inhibitor tebufenpyrad (Tebu) induced PKCδ phosphorylation at the T505 activation loop accompanied by caspase-3-dependent proteolytic activation. High-resolution 3D confocal microscopy revealed that proteolytically activated cleaved PKCδ translocates to the nucleus, colocalizing with Lamin B1. Electron microscopy also visualized nuclear membrane damage in Tebu-treated N27 cells. In silico analyses identified threonine site on Lamin B1 (T575) as a phosphorylation site of PKCδ. Interestingly, N27 DAergic cells stably expressing a PKCδ cleavage-resistant mutant failed to induce nuclear damage, PKCδ activation, and Lamin B1 phosphorylation. Furthermore, CRISPR/Cas9-based stable knockdown of PKCδ greatly attenuated Tebu-induced Lamin B1 phosphorylation. Also, studies using the Lamin B1T575G phosphorylation mutant and PKCδ-ΔNLS-overexpressing N27 cells showed that PKCδ activation and translocation to the nuclear membrane are essential for phosphorylating Lamin B1 at T575 to induce nuclear membrane damage during Tebu insult. Additionally, Tebu failed to induce Lamin B1 damage and Lamin B1 phosphorylation in organotypic midbrain slices cultured from PKCδ-/- mouse pups. Postmortem analyses of PD brains revealed significantly higher PKCδ activation, Lamin B1 phosphorylation, and Lamin B1 loss in nigral DAergic neurons compared to age-matched healthy controls, demonstrating the translational relevance of these findings. Collectively, our data reveal that PKCδ functions as a Lamin B1 kinase to disassemble the nuclear membrane during mitochondrial stress-induced neuronal death. This mechanistic insight may have important implications for the etiology of age-related neurodegenerative diseases resulting from mitochondrial dysfunction as well as for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Yuan-Teng Chang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Bharathi Palanisamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Emir Malovic
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Zainab Riaz
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Cameron Miller
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Manikandan Samidurai
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Gary Zenitsky
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Butler B, Renney M, Bennett K, Charpentier G, Nance E. A rotenone organotypic whole hemisphere slice model of mitochondrial abnormalities in the neonatal brain. J Biol Eng 2024; 18:67. [PMID: 39543609 PMCID: PMC11566268 DOI: 10.1186/s13036-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Mitochondrial abnormalities underscore a variety of neurologic injuries and diseases and are well-studied in adult populations. Clinical studies identify critical roles of mitochondria in a wide range of developmental brain injuries, but models that capture mitochondrial abnormalities in systems representative of the neonatal brain environment are lacking. Here, we develop an organotypic whole-hemisphere (OWH) brain slice model of mitochondrial dysfunction in the neonatal brain. We extended the utility of complex I inhibitor rotenone (ROT), canonically used in models of adult neurodegenerative diseases, to inflict mitochondrial damage in OWH slices from term-equivalent rats. We quantified whole-slice health over 6 days of exposure for a range of doses represented in ROT literature. We identified 50 nM ROT as a suitable exposure level for OWH slices to inflict injury without compromising viability. At the selected exposure level, we confirmed exposure- and time-dependent mitochondrial responses showing differences in mitochondrial fluorescence and nuclear localization using MitoTracker imaging in live OWH slices and dysregulated mitochondrial markers via RT-qPCR screening. We leveraged the regional structures present in OWH slices to quantify cell density and cell death in the cortex and the midbrain regions, observing higher susceptibilities to damage in the midbrain as a function of exposure and culture time. We supplemented these findings with analysis of microglia and mature neurons showing time-, region-, and exposure-dependent differences in microglial responses. We demonstrated changes in tissue microstructure as a function of region, culture time, and exposure level using live-video epifluorescence microscopy of extracellularly diffusing nanoparticle probes in live OWH slices. Our results highlight severity-, time-, and region-dependent responses and establish a complimentary model system of mitochondrial abnormalities for high-throughput or live-tissue experimental needs.
Collapse
Affiliation(s)
- Brendan Butler
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Malcolm Renney
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Kristin Bennett
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Gisele Charpentier
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Charli A, Luo J, Palanisamy B, Malovic E, Riaz Z, Miller C, Chang YT, Samidurai M, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial Stress Disassembles Nuclear Architecture through Proteolytic Activation of PKCδ and Lamin B1 Phosphorylation in Neuronal Cells: Implications for Pathogenesis of Age-related Neurodegenerative Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621517. [PMID: 39554109 PMCID: PMC11565982 DOI: 10.1101/2024.11.01.621517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are hallmarks of pathophysiological processes in age-related neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases. Neuronal cells are highly vulnerable to mitochondrial stress, however, the cellular and molecular mechanisms underlying the enhanced vulnerability are not well understood. Previously, we demonstrated that the novel PKC isoform PKCδ is highly expressed in dopamin(DA)ergic neurons and plays a key role in inducing apoptotic cell death during neurotoxic stress via caspase-3-mediated proteolytic activation. Herein, we further uncovered a key downstream molecular event of PKCδ signaling following mitochondrial dysfunction that governs neuronal cell death by dissembling nuclear architecture. Exposing N27 DAergic cell line to the mitochondrial complex-1 inhibitor tebufenpyrad induced PKCδ phosphorylation at the T505 activation loop accompanied by caspase-3-dependent proteolytic activation of the kinase. Subcellular analysis using high-resolution 3D confocal microscopy revealed that proteolytically activated cleaved PKCδ translocates to the nuclear compartment, colocalizing with Lamin B1. Electron microscopy also enabled the visualization of nuclear membrane damage triggered by subjecting the DAergic neuronal cells by Tebufenpyrad (Tebu) toxicity. In silico analyses identified that the threonine site on Lamin B1 (T575) is likely phosphorylated by PKCδ, suggesting that Lamin B1 serves as a key downstream target of the kinase. Interestingly, N27 DAergic cells stably expressing the PKCδ proteolytic cleavage site-resistant mutant failed to induce nuclear damage, PKCδ activation, and Lamin B1 phosphorylation. Furthermore, CRISPR/Cas9-based stable knockdown of PKCδ greatly attenuated Tebu-induced Lamin B1 phosphorylation. Also, studies using Lamin B1 T575G mutated at phosphorylation and PKCδ-ΔNLS-overexpressing N27 cells showed that PKCδ activation and translocation to the nuclear membrane are critically required for phosphorylating Lamin B1 at T575 to induce nuclear membrane damage during Tebu insult. Additionally, Tebu failed to induce Lamin B1 damage and Lamin B1 phosphorylation in organotypic midbrain slices cultured from PKCδ -/- mouse pups. More importantly, we observed higher PKCδ activation, Lamin B1 phosphorylation and Lamin B1 loss in nigral DAergic neurons from the postmortem brains of PD patients as compared to age-matched healthy control brains, thus providing translational relevance of our finding. Collectively, our data reveal that PKCδ functions as a Lamin B1 kinase to disassemble the nuclear membrane during the neuronal cell death process triggered by mitochondrial stress. This mechanistic insight may have important implications for the etiology of age-related neurodegenerative diseases resulting from mitochondrial dysfunction as well as for the development of novel treatment strategies.
Collapse
|
5
|
Kotsyuba E, Dyachuk V. Effects of Chronic Exposure to Low Doses of Rotenone on Dopaminergic and Cholinergic Neurons in the CNS of Hemigrapsus sanguineus. Int J Mol Sci 2024; 25:7159. [PMID: 39000265 PMCID: PMC11241242 DOI: 10.3390/ijms25137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
6
|
Giraldo-Berrio D, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Rotenone Induces a Neuropathological Phenotype in Cholinergic-like Neurons Resembling Parkinson's Disease Dementia (PDD). Neurotox Res 2024; 42:28. [PMID: 38842585 PMCID: PMC11156752 DOI: 10.1007/s12640-024-00705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A β ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 μ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A β (iA β ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA β , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.
Collapse
Affiliation(s)
- Daniela Giraldo-Berrio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, Medellin, Antioquia, Colombia.
| |
Collapse
|
7
|
Chen J, Mu X, Liu H, Yong Q, Ouyang X, Liu Y, Zheng L, Chen H, Zhai Y, Ma J, Meng L, Liu S, Zheng H. Rotenone impairs brain glial energetics and locomotor behavior in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167870. [PMID: 37865240 DOI: 10.1016/j.scitotenv.2023.167870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Bumblebees are essential pollinators of both wildflowers and crops and face multiple anthropogenic stressors, particularly the utilization of pesticides. Rotenone is an extensively applied neurotoxic pesticide that possesses insecticidal activities against a wide range of pests. However, whether environmentally realistic exposure levels of rotenone can damage neurons in bumblebee brains is still uncertain. Using single-cell RNA-seq, we revealed that rotenone induced cell-specific responses in bumblebee brains, emphasizing the disruption of energy metabolism and mitochondrial dysfunction in glial cells. Correspondingly, the gene regulatory network associated with neurotransmission was also suppressed. Notably, rotenone could specially reduce the number of dopaminergic neurons, impairing bumblebee's ability to fly and crawl. We also found impaired intestinal motility in rotenone-treated bumblebees. Finally, we demonstrated that many differentially expressed genes in our snRNA-seq data overlapped with rotenone-induced Parkinson's disease risk genes, especially in glial cells. Although rotenone is widely used owing to its hypotoxicity, we found that environmentally realistic exposure levels of rotenone induced disturbed glial energetics and locomotor dysfunction in bumblebees, which may lead to an indirect decline in this essential pollinator.
Collapse
Affiliation(s)
- Jieteng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huiling Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiyao Yong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoman Ouyang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Ma
- BGI-Qingdao, Qingdao 266555, China
| | | | | | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
8
|
Subhan I, Siddique YH. Effect of Rotenone on the Neurodegeneration among Different Models. Curr Drug Targets 2024; 25:530-542. [PMID: 38698744 DOI: 10.2174/0113894501281496231226070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 05/05/2024]
Abstract
Rotenone is a naturally occurring plant product used as an insecticide, pesticide and piscicide. It is lipophilic in nature and can cross the blood-brain barrier and induce the degeneration of neurons. It inhibits the mitochondrial respiratory chain complex I and stops the transfer of electrons. It induces ROS generation, which impairs mitochondrial activity. Rotenone is a toxic agent which causes the death of neurons. The present review describes the effect of rotenone on neurodegeneration with an emphasis on behavioral, pathological and neuropathological components carried out on various experimental models such as cell lines, Drosophila melanogaster, mice and rats.
Collapse
Affiliation(s)
- Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
9
|
Neurodegeneration in a Regulatory Context: The Need for Speed. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Lima RS, Carrettiero DC, Ferrari MFR. BAG2 prevents Tau hyperphosphorylation and increases p62/SQSTM1 in cell models of neurodegeneration. Mol Biol Rep 2022; 49:7623-7635. [PMID: 35612780 DOI: 10.1007/s11033-022-07577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein aggregates are pathological hallmarks of many neurodegenerative diseases, however the physiopathological role of these aggregates is not fully understood. Protein quality control has a pivotal role for protein homeostasis and depends on specific chaperones. The co-chaperone BAG2 can target phosphorylated Tau for degradation by an ubiquitin-independent pathway, although its possible role in autophagy was not yet elucidated. In view of this, the aim of the present study was to investigate the association among protein aggregation, autophagy and BAG2 levels in cultured cells from hippocampus and locus coeruleus as well as in SH-SY5Y cell line upon different protein aggregation scenarios induced by rotenone, which is a flavonoid used as pesticide and triggers neurodegeneration. METHODS AND RESULTS The present study showed that rotenone exposure at 0.3 nM for 48 h impaired autophagy prior to Tau phosphorylation at Ser199/202 in hippocampus but not in locus coeruleus cells, suggesting that distinct neuron cells respond differently to rotenone toxicity. Rotenone induced Tau phosphorylation at Ser199/202, together with a decrease in the endogenous BAG2 protein levels in SH-SY5Y and hippocampus cell culture, which indicates that rotenone and Tau hyperphosphorylation can affect this co-chaperone. Finally, it has been shown that BAG2 overexpression, increased p62/SQSTM1 levels in cells from hippocampus and locus coeruleus, stimulated LC3II recycling as well as prevented the raise of phosphorylated Tau at Ser199/202 in hippocampus. CONCLUSIONS Results demonstrate a possible role for BAG2 in degradation pathways of specific substrates and its importance for the study of cellular aspects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raquel S Lima
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | - Daniel C Carrettiero
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
11
|
Sardoiwala MN, Mohanbhai SJ, Karmakar S, Choudhury SR. Hytrin loaded polydopamine-serotonin nanohybrid induces IDH2 mediated neuroprotective effect to alleviate Parkinson's disease. BIOMATERIALS ADVANCES 2022; 133:112602. [PMID: 35527145 DOI: 10.1016/j.msec.2021.112602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is the second most neurodegenerative disease caused due to synucleinopathy leads to the death of dopaminergic and serotonergic neurons. The approach to reduce synucleinopathy paves the therapeutic way in PD management. Recent studies highlight anti-Parkinsonism effect of Hytrin that regulates energy homeostasis via activation of mitochondrial redox regulator; IDH2 leading to attenuation of synucleinopathy. However, the burst release kinetics of Hytrin restricts its therapeutic potential. Therefore, we aimed to improve Hytrin release kinetics through nanocarrier mediated delivery, replenish dopamine and serotonin by formulating Hytrin loaded polydopamine serotonin nanohybrid for PD protection. Present study also explores IDH2 mediated neuroprotective action in retardation of synucleinopathy for PD prevention. Nanoformulation has shown effective neurotherapeutic potential by improving Hytrin release profile in the reduction of PD symptoms in vitro and ex vivo. The neuroprotective effect has been attributed to IDH2 induction and alpha-synuclein reduction against rotenone insults. The direct physical interaction of IDH2 and alpha-synuclein, PD hallmark has been uncovered. The study divulges that the restorative effect of our nanoformulation significantly retards the PD deficits byinducing IDH2 mediated alpha-synuclein ubiquitination and proteasomal degradation pathway.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India.
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
12
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
13
|
Steiner K, Humpel C. Microcontact Printing of Cholinergic Neurons in Organotypic Brain Slices. Front Neurol 2021; 12:775621. [PMID: 34867765 PMCID: PMC8636044 DOI: 10.3389/fneur.2021.775621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease is a severe neurodegenerative disorder of the brain, characterized by beta-amyloid plaques, tau pathology, and cell death of cholinergic neurons, resulting in loss of memory. The reasons for the damage of the cholinergic neurons are not clear, but the nerve growth factor (NGF) is the most potent trophic factor to support the survival of these neurons. In the present study we aim to microprint NGF onto semipermeable 0.4 μm pore membranes and couple them with organotypic brain slices of the basal nucleus of Meynert and to characterize neuronal survival and axonal growth. The brain slices were prepared from postnatal day 10 wildtype mice (C57BL6), cultured on membranes for 2-6 weeks, stained, and characterized for choline acetyltransferase (ChAT). The NGF was microcontact printed in 28 lines, each with 35 μm width, 35 μm space between them, and with a length of 8 mm. As NGF alone could not be printed on the membranes, NGF was embedded into collagen hydrogels and the brain slices were placed at the center of the microprints and the cholinergic neurons that survived. The ChAT+ processes were found to grow along with the NGF microcontact prints, but cells also migrated. Within the brain slices, some form of re-organization along the NGF microcontact prints occurred, especially the glial fibrillary acidic protein (GFAP)+ astrocytes. In conclusion, we provided a novel innovative microcontact printing technique on semipermeable membranes which can be coupled with brain slices. Collagen was used as a loading substance and allowed the microcontact printing of nearly any protein of interest.
Collapse
Affiliation(s)
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Gulsun T, Ucar B, Sahin S, Humpel C. The Organic Cation Transporter 2 Inhibitor Quinidine Modulates the Neuroprotective Effect of Nerve Growth Factor and Memantine on Cholinergic Neurons of the Basal Nucleus of Meynert in Organotypic Brain Slices. Pharmacology 2021; 106:390-399. [PMID: 33979803 DOI: 10.1159/000515907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain characterized by degeneration of cholinergic neurons which is directly linked to cognitive decline. Nerve growth factor (NGF) is the most potent protective factor for cholinergic neurons, additionally the NMDA antagonist memantine blocks glutamate-mediated excitotoxic activity. Quinidine is an inhibitor of organic cation transporter 2 (OCT2). OCT2 is located on cholinergic neurons and plays a role in presynaptic reuptake and recycling of acetylcholine in the brain. We hypothesize that quinidine can modulate the protective effects of NGF and memantine on cholinergic neurons in organotypic brain slices of the nucleus basalis of Meynert (nBM). METHODS Organotypic brain slices of nBM were incubated with 100 ng/mL NGF, 10 µM memantine, 10 µM quinidine, and combinations of these treatments for 2 weeks. Cholinergic neurons were immunohistochemically stained for choline acetyltransferase (ChAT). RESULTS Our data show that NGF as well as memantine counteracted the cell death of cholinergic nBM neurons. Quinidine alone had no toxic effect on cholinergic neurons but inhibited the protective effect of NGF and memantine when applied simultaneously. DISCUSSION/CONCLUSION Our data provide evidence that quinidine modulates the survival of cholinergic nBM neurons via OCT2.
Collapse
Affiliation(s)
- Tugba Gulsun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
16
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
17
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 2018; 57:1017-1039. [PMID: 27662312 DOI: 10.3233/jad-160623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Collapse
|
19
|
Foidl BM, Ucar B, Schwarz A, Rebelo AL, Pandit A, Humpel C. Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. J Neurosci Methods 2017; 295:77-86. [PMID: 29221639 DOI: 10.1016/j.jneumeth.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimeŕs disease is accompanied by cell death of cholinergic neurons, resulting in cognitive impairment and memory loss. Nerve growth factor (NGF) is the most potent protein to support survival of cholinergic neurons. NEW METHOD Organotypic brain slices of the basal nucleus of Meynert (nBM) are a valuable tool to study cell death of axotomized cholinergic neurons, as well as protective effects of NGF added into the medium. The aim of the present study is to use collagen scaffolds crosslinked with polyethyleneglycole and load with NGF to target delivery of NGF to organotypic nBM brain slices. RESULTS Collagen scaffolds (visualized by incorporating AlexaFluor 488 antibodies) slowly degraded when applied onto organotypic brain slices within 2 weeks in culture. GFAP reactive astrocytes and Iba1+ microglia became visible around the collagen scaffolds 7days after incubation, showing reactive gliosis. Cholinergic neurons of the nBM survived (201±21, n=8) when incubated with 100ng/ml NGF in the medium compared to NGF-free medium (69±12, n=7). Collagen scaffolds loaded with NGF (1ng/2μl scaffold) significantly rescued cholinergic cell death in the nBM brain slices (175±12, n=10), which was counteracted by an anti-NGF antibody (77±5, n=5). COMPARISON WITH EXISTING METHODS The combination of coronal brain slices with biomaterial is a novel and potent tool to selectively study neuroprotective effects. CONCLUSIONS Collagen scaffolds loaded with low amounts of a protein/drug of interest can be easily applied directly onto organotypic brain slices, allowing slow targeted release of a protective molecule. Such an approach is highly useful to optimize CollScaff for further in vivo applications.
Collapse
Affiliation(s)
- Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Alina Schwarz
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Ana L Rebelo
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
20
|
Almeida MF, Silva CM, Chaves RS, Lima NCR, Almeida RS, Melo KP, Demasi M, Fernandes T, Oliveira EM, Netto LES, Cardoso SM, Ferrari MFR. Effects of mild running on substantia nigra during early neurodegeneration. J Sports Sci 2017; 36:1363-1370. [PMID: 28895489 DOI: 10.1080/02640414.2017.1378494] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.
Collapse
Affiliation(s)
- Michael F Almeida
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Carolliny M Silva
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Rodrigo S Chaves
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Nathan C R Lima
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Renato S Almeida
- b Institute for Biosciences , University of Taubate , Taubate , Brazil
| | - Karla P Melo
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Marilene Demasi
- c Laboratory of Biochemistry and Biophysics , Butantan Institute , Sao Paulo , Brazil
| | - Tiago Fernandes
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Edilamar M Oliveira
- d Laboratory of Biochemistry and Molecular Biology of the Exercise, Department of Human Movement Biodynamic, School of Physical Education and Sport , University of Sao Paulo , Sao Paulo , Brazil
| | - Luis E S Netto
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| | - Sandra M Cardoso
- e Center for Neuroscience and Cell Biology , University of Coimbra , Coimbra , Portugal.,f Institute of Cellular and Molecular Biology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Merari F R Ferrari
- a Departamento de Genética e Biologia Evolutiva, Instituto de Biociências , Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
21
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
22
|
Abdel-Salam OME, Youness ER, Ahmed NA, El-Toumy SA, Souleman AMA, Shaffie N, Abouelfadl DM. Bougainvillea spectabilis flowers extract protects against the rotenone-induced toxicity. ASIAN PAC J TROP MED 2017; 10:478-490. [PMID: 28647186 DOI: 10.1016/j.apjtm.2017.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/20/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the effect of two extracts of Bougainvillea spectabilis (B. spectabilis) flowers with yellow and pink/purple on brain oxidative stress and neuronal damage caused in rats by systemic rotenone injection. METHODS Rotenone 1.5 mg/kg was given three times per week alone or in combination with B. spectabilis flowers extracts (25 mg or 50 mg) via the subcutaneous route for 2 weeks. Brain concentrations of the lipid peroxidation marker malondialdehyde (MDA), reduced glutathione, nitric oxide (nitrite), the pro-inflammatory cytokine interleukin-1beta (Il-1β) as well as butyrylcholinesterase, and paraoxonase-1 (PON-1) activities, were determined. Histopathology and caspase-3 immunohistochemistry were also performed. RESULTS Rotenone resulted in significant increases of brain MDA (the product of lipid peroxidation), and nitric oxide content along with decreased brain reduced glutathione. There were also marked and significant inhibition of brain PON-1 and BChE activities and increased Il-1β in brain of rotenone-treated rats. B. spectabilis flowers extract itself resulted in brain oxidative stress increasing both lipid peroxidation and nitrite content whilst inhibiting PON-1 activity. The yellow flowers extract inhibited BChE activity and increased brain Il-1β. When given to rotenone-treated rats, B. spectabilis extracts, however, decreased lipid peroxidation while their low administered doses increased brain GSH. Brain nitrite decreased by the pink extract but showed further increase by the yellow extract. Either extract, however, caused further inhibition of PON-1 activity while the yellow extract resulted in further inhibition of BChE activity. Histopathological studies indicated that both extracts protected against brain, liver and kidney damage caused by the toxicant. CONCLUSIONS These data indicate that B. spectabilis flowers extracts exert protective effect against the toxic effects of rotenone on brain, liver and kidney. B. spectabilis flowers extracts decreased brain lipid peroxidation and prevented neuronal death due to rotenone and might thus prove the value in treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nadia A Ahmed
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Sayed A El-Toumy
- Department of Chemistry of Tannins, National Research Centre, Cairo, Egypt
| | - Ahmed M A Souleman
- Department of Phytochemistry and Plant Systematic, National Research Centre, Cairo, Egypt
| | - Nermeen Shaffie
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | |
Collapse
|
23
|
Sharrad DF, Chen BN, Gai WP, Vaikath N, El-Agnaf OM, Brookes SJH. Rotenone and elevated extracellular potassium concentration induce cell-specific fibrillation of α-synuclein in axons of cholinergic enteric neurons in the guinea-pig ileum. Neurogastroenterol Motil 2017; 29. [PMID: 27997067 DOI: 10.1111/nmo.12985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Parkinson's disease is a progressive neurodegenerative disorder that results in the widespread loss of select classes of neurons throughout the nervous system. The pathological hallmarks of Parkinson's disease are Lewy bodies and neurites, of which α-synuclein fibrils are the major component. α-Synuclein aggregation has been reported in the gut of Parkinson's disease patients, even up to a decade before motor symptoms, and similar observations have been made in animal models of disease. However, unlike the central nervous system, the nature of α-synuclein species that form these aggregates and the classes of neurons affected in the gut are unclear. We have previously reported selective expression of α-synuclein in cholinergic neurons in the gut (J Comp Neurol. 2013; 521:657), suggesting they may be particularly vulnerable to degeneration in Parkinson's disease. METHODS In this study, we used immunohistochemistry to detect α-synuclein oligomers and fibrils via conformation-specific antibodies after rotenone treatment or prolonged exposure to high [K+ ] in ex vivo segments of guinea-pig ileum maintained in organotypic culture. KEY RESULTS Rotenone and prolonged raising of [K+ ] caused accumulation of α-synuclein fibrils in the axons of cholinergic enteric neurons. This took place in a time- and, in the case of rotenone, concentration-dependent manner. Rotenone also caused selective necrosis, indicated by increased cellular autofluorescence, of cholinergic enteric neurons, labeled by ChAT-immunoreactivity, also in a concentration-dependent manner. CONCLUSIONS & INFERENCES To our knowledge, this is the first report of rotenone causing selective loss of a neurochemical class in the enteric nervous system. Cholinergic enteric neurons may be particularly susceptible to Lewy pathology and degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D F Sharrad
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - B N Chen
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - W P Gai
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - N Vaikath
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - O M El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - S J H Brookes
- Discipline of Human Physiology, FMST, School of Medicine, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
24
|
Chaves RS, Kazi AI, Silva CM, Almeida MF, Lima RS, Carrettiero DC, Demasi M, Ferrari MFR. Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Rep 2016; 1:32-45. [PMID: 30135926 PMCID: PMC6084878 DOI: 10.1016/j.ibror.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 01/24/2023] Open
Abstract
Protein aggregation is an important feature of neurodegenerative disorders. In Alzheimer's disease (AD) protein aggregates are composed of hyperphosphorylated Tau and amyloid beta peptide (Aβ). Despite the involvement and identification of the molecular composition of these aggregates, their role in AD pathophysiology is not fully understood. However, depositions of these insoluble aggregates are typically reported as pathogenic and toxic for cell homeostasis. New evidences suggest that the deposition of these aggregates is a protective mechanism that preserves cell from toxic insults associated with the early stages of neurodegenerative diseases. To better understand the biological role of the protein aggregation with regard its effects in cellular homeostasis, the present study investigated the role of insoluble Tau and Tau aggregates on crucial cellular parameters such as redox homeostasis, proteasome activity and autophagy in hippocampal cell cultures and hippocampus of aged Lewis rats using a rotenone-induced aggregation model. Neurons were exposed to rotenone in different concentrations and exposure times aiming to determine the interval required for Tau aggregation. Our experimental design allowed us to demonstrate that rotenone exposure induces Tau hyperphosphorylation and aggregation in a concentration and time-dependent manner. Oxidative stress triggered by rotenone exposure was observed with the absence of Tau aggregates and was reduced or absent when Tau aggregates were present. This reduction of oxidative stress along with the presence of insoluble Tau was independent of alterations in antioxidant enzymes activities or cell death. In addition, rotenone induced oxidative stress was mainly associated with decrease in proteasome activity and autophagy flux. Conversely, when insoluble Tau appeared, autophagy turns to be overactivated while proteasome activity remained low. Our studies significantly advance the understanding that Tau aggregation might exert protective cellular effects, at least briefly, when neurons are facing neurodegeneration stimulus. We believe that our data add more complexity for the understanding of protein aggregation role in AD etiology.
Collapse
Affiliation(s)
- Rodrigo S Chaves
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Amajad I Kazi
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolliny M Silva
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael F Almeida
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel S Lima
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics - Butantan Institute, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Department of Genetics and Evolutionary Biology - Institute for Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
25
|
Yan D, Zhang Y, Liu L, Yan H. Pesticide exposure and risk of Alzheimer's disease: a systematic review and meta-analysis. Sci Rep 2016; 6:32222. [PMID: 27581992 PMCID: PMC5007474 DOI: 10.1038/srep32222] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/04/2016] [Indexed: 01/11/2023] Open
Abstract
Evidence suggests that lifelong cumulative exposure to pesticides may generate lasting toxic effects on the central nervous system and contribute to the development of Alzheimer's disease (AD). A number of reports indicate a potential association between long-term/low-dose pesticide exposure and AD, but the results are inconsistent. Therefore, we conducted a meta-analysis to clarify this association. Relevant studies were identified according to inclusion criteria. Summary odds ratios (ORs) were calculated using fixed-effects models. A total of seven studies were included in our meta-analysis. A positive association was observed between pesticide exposure and AD (OR = 1.34; 95% confidence interval [CI] = 1.08, 1.67; n = 7). The summary ORs with 95% CIs from the crude and adjusted effect size studies were 1.14 (95% CI = 0.94, 1.38; n = 7) and 1.37 (95% CI = 1.09, 1.71; n = 5), respectively. The sensitivity analyses of the present meta-analysis did not substantially modify the association between pesticide exposure and AD. Subgroup analyses revealed that high-quality studies tended to show significant relationships. The present meta-analysis suggested a positive association between pesticide exposure and AD, confirming the hypothesis that pesticide exposure is a risk factor for AD. Further high-quality cohort and case-control studies are required to validate a causal relationship.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, PR China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| |
Collapse
|
26
|
BDNF trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity. IBRO Rep 2016; 1:19-31. [PMID: 30135925 PMCID: PMC6084862 DOI: 10.1016/j.ibror.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals and anchored to plasma membrane, through SLP1, CRMP2 and Rab27B, associated with KIF1B. Retrograde trafficking is made by EDH-4 together with dynactin and dynein molecular motors. In the present study it was found that early neurodegeneration is accompanied by decrease in BDNF signaling, in the absence of hyperphosphorylated tau aggregation, in hippocampus of 11 months old Lewis rats exposed to rotenone. It was also demonstrated that moderate physical activity (treadmill running, during 6 weeks, concomitant to rotenone exposure) prevents the impairment of BDNF system in aged rats, which may contribute to delay neurodegeneration. In conclusion, decrease in BDNF and TrkB vesicles occurs before large aggregate-like p-Tau are formed and physical activity applied during early neurodegeneration may be of relevance to prevent BDNF system decay.
Collapse
|
27
|
Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders. Stem Cells Int 2016; 2016:3540568. [PMID: 27127518 PMCID: PMC4835641 DOI: 10.1155/2016/3540568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/22/2016] [Indexed: 12/02/2022] Open
Abstract
Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia.
Collapse
|
28
|
Navarro E, Buendia I, Parada E, León R, Jansen-Duerr P, Pircher H, Egea J, Lopez MG. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.07.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Humpel C. Organotypic brain slice cultures: A review. Neuroscience 2015; 305:86-98. [PMID: 26254240 PMCID: PMC4699268 DOI: 10.1016/j.neuroscience.2015.07.086] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022]
Abstract
In vitro cell cultures are an important tool for obtaining insights into cellular processes in an isolated system and a supplement to in vivo animal experiments. While primary dissociated cultures permit a single homogeneous cell population to be studied, there is a clear need to explore the function of brain cells in a three-dimensional system where the main architecture of the cells is preserved. Thus, organotypic brain slice cultures have proven to be very useful in investigating cellular and molecular processes of the brain in vitro. This review summarizes (1) the historical development of organotypic brain slices focusing on the membrane technology, (2) methodological aspects regarding culturing procedures, age of donors or media, (3) whether the cholinergic neurons serve as a model of neurodegeneration in Alzheimer’s disease, (4) or the nigrostriatal dopaminergic neurons as a model of Parkinson’s disease and (5) how the vascular network can be studied, especially with regard to a synthetic blood–brain barrier. This review will also highlight some limits of the model and give an outlook on future applications.
Collapse
Affiliation(s)
- C Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
30
|
Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS One 2015; 10:e0121930. [PMID: 25830951 PMCID: PMC4382317 DOI: 10.1371/journal.pone.0121930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/13/2015] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of β-amyloid (Aβ) senile plaques and tau-associated neurofibrillary tangles. Other disease features include neuroinflammation and cholinergic neurodegeneration, indicating their possible importance in disease propagation. Recent studies have shown that monocytic cells can migrate into the AD brain toward Aβ plaques and reduce plaque burden. The purpose of this study was to evaluate whether the administration of intravenous infusions of 'young' CD11b-positive (+) monocytes into an AD mouse model can enhance Aβ plaque clearance and attenuate cognitive deficits. Peripheral monocytes were isolated from two-week-old wildtype mice using the Pluriselect CD11b+ isolation method and characterized by FACS analysis for surface marker expression and effective phagocytosis of 1 μm fluorescent microspheres, FITC-Dextran or FITC-Aβ1-42. The isolated monocytes were infused via the tail vein into a transgenic AD mouse model, which expresses the Swedish, Dutch/Iowa APP mutations (APPSwDI). The infusions began when animals reached 5 months of age, when little plaque deposition is apparent and were repeated again at 6 and 7 months of age. At 8 months of age, brains were analyzed for Aβ+ plaques, inflammatory processes and microglial (Iba1) activation. Our data show that infusions of two-week-old CD11b+ monocytes into adult APPSwDI mice results in a transient improvement of memory function, a reduction (30%) in Aβ plaque load and significantly in small (<20 μm) and large (>40 μm) plaques. In addition, we observe a reduction in Iba1+ cells, as well as no marked elevations in cytokine levels or other indicators of inflammation. Taken together, our findings indicate that young CD11b+ monocytes may serve as therapeutic candidates for improved Aβ clearance in AD.
Collapse
|
31
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
32
|
Daschil N, Humpel C. Nifedipine and nimodipine protect dopaminergic substantia nigra neurons against axotomy-induced cell death in rat vibrosections via modulating inflammatory responses. Brain Res 2014; 1581:1-11. [PMID: 25038562 DOI: 10.1016/j.brainres.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
Abstract
Neurodegeneration of cholinergic and dopaminergic neurons is a major hallmark in Alzheimer's or Parkinson's disease, respectively. A dysregulation in calcium homeostasis may be part of this process and counteracting calcium influx may have neuroprotective properties in both diseases. Therefore, we investigated the putative neuroprotective or neurotoxic activity of L-type calcium channel (LTCC) inhibitors on cholinergic and dopaminergic neurons in a rat organotypic vibrosection model. Sagittal or coronal vibrosections (200 μm thick) of postnatal day 10 rats were cultured on 0.4 μm semipermeable membranes for 2 weeks with 10 ng/ml nerve growth factor (NGF) and/or glial-cell line derived neurotrophic factor (GDNF) to maintain survival of cholinergic or dopaminergic neurons, respectively. Thereafter, sections were incubated with 0.1, 1 or 10 μM isradipine, nicardipine or verapamil for 2 weeks to explore cytotoxicity. Alternatively, in order to explore neuroprotective activity, vibrosections were incubated without growth factors but with isradipine or verapamil or with nicardipine, nimodipine or nifedipine from the beginning for 4 weeks. Our data show that all LTCC inhibitors exhibited no neurotoxic effect on cholinergic and dopaminergic neurons. Further, LTCC inhibitors did not have any neuroprotective activity on cholinergic neurons. However, nimodipine and nifedipine significantly enhanced the survival of dopaminergic substantia nigra (SN) but not ventral tegmental area (VTA) neurons, while nicardipine, isradipine and verapamil had no effect. Nifedipine (and more potently GDNF) reduced inflammatory cytokines (macrophage inflammatory protein-2, tumor necrosis factor-α), but did not influence oxidative stress or caspase-3 activity and did not interfere with iron-mediated overload. Our data show that nifedipine and nimodipine are very potent to enhance the survival of axotomized SN neurons, possibly influencing inflammatory processes.
Collapse
Affiliation(s)
- Nina Daschil
- Laboratory of Psychiatry and Experimental Alzheimer׳s Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer׳s Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Austria.
| |
Collapse
|
33
|
Linking pesticide exposure and dementia: what is the evidence? Toxicology 2013; 307:3-11. [PMID: 23416173 DOI: 10.1016/j.tox.2013.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022]
Abstract
There has been a steep increase in the prevalence of dementia in recent decades, which has roughly followed an increase in pesticide use some decades earlier, a time when it is probable that current dementia patients could have been exposed to pesticides. This raises the question whether pesticides contribute to dementia pathogenesis. Indeed, many studies have found increased prevalence of cognitive, behavioral and psychomotor dysfunction in individuals chronically exposed to pesticides. Furthermore, evidence from recent studies shows a possible association between chronic pesticide exposure and an increased prevalence of dementia, including Alzheimer's disease (AD) dementia. At the cellular and molecular level, the mechanism of action of many classes of pesticides suggests that these compounds could be, at least partly, accountable for the neurodegeneration accompanying AD and other dementias. For example, organophosphates, which inhibit acetylcholinesterase as do the drugs used in treating AD symptoms, have also been shown to lead to microtubule derangements and tau hyperphosphorylation, a hallmark of AD. This emerging association is of considerable public health importance, given the increasing dementia prevalence and pesticide use. Here we review the epidemiological links between dementia and pesticide exposure and discuss the possible pathophysiological mechanisms and clinical implications of this association.
Collapse
|
34
|
Cabeza-Arvelaiz Y, Schiestl RH. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 2012; 7:e44700. [PMID: 22970289 PMCID: PMC3436760 DOI: 10.1371/journal.pone.0044700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, David Geffen School of Medicine and School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America.
| | | |
Collapse
|
35
|
Chadderton N, Palfi A, Millington-Ward S, Gobbo O, Overlack N, Carrigan M, O'Reilly M, Campbell M, Ehrhardt C, Wolfrum U, Humphries P, Kenna PF, Farrar GJ. Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur J Hum Genet 2012; 21:62-8. [PMID: 22669418 PMCID: PMC3522193 DOI: 10.1038/ejhg.2012.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrially inherited form of visual dysfunction caused by mutations in several genes encoding subunits of the mitochondrial respiratory NADH-ubiquinone oxidoreductase complex (complex I). Development of gene therapies for LHON has been impeded by genetic heterogeneity and the need to deliver therapies to the mitochondria of retinal ganglion cells (RGCs), the cells primarily affected in LHON. The therapy under development entails intraocular injection of a nuclear yeast gene NADH-quinone oxidoreductase (NDI1) that encodes a single subunit complex I equivalent and as such is mutation independent. NDI1 is imported into mitochondria due to an endogenous mitochondrial localisation signal. Intravitreal injection represents a clinically relevant route of delivery to RGCs not previously used for NDI1. In this study, recombinant adenoassociated virus (AAV) serotype 2 expressing NDI1 (AAV-NDI1) was shown to protect RGCs in a rotenone-induced murine model of LHON. AAV-NDI1 significantly reduced RGC death by 1.5-fold and optic nerve atrophy by 1.4-fold. This led to a significant preservation of retinal function as assessed by manganese enhanced magnetic resonance imaging and optokinetic responses. Intraocular injection of AAV-NDI1 overcomes many barriers previously associated with developing therapies for LHON and holds great therapeutic promise for a mitochondrial disorder for which there are no effective therapies.
Collapse
Affiliation(s)
- Naomi Chadderton
- School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ullrich C, Daschil N, Humpel C. Organotypic vibrosections: novel whole sagittal brain cultures. J Neurosci Methods 2011; 201:131-41. [PMID: 21835204 PMCID: PMC3176904 DOI: 10.1016/j.jneumeth.2011.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 10/27/2022]
Abstract
In vitro cell culture models are of enormous importance in neuroscience research and organotypic brain slices are found to be a potent model very close to the in vivo situation. Brain slices can be cultured as single slices or as co-slices. However, there is need to culture whole brain sections, containing the complex functional architecture. The aim of the present study was to develop and characterize whole brain sagittal slice cultures (200μm organotypic vibrosections) from postnatal day 8 rats. We show that sagittal vibrosections can be cultured for several weeks and they maintain survival of cholinergic and dopaminergic neurons, as well as a strong capillary network. Partly long-distance cortico-striatal and cortico-hippocampal nerve fibers were found using Mini-Ruby neurotracing. Dopaminergic nerve fibers extended from the mesencephalon, but in the striato-nigral tract and in the striatum only strong dense varicosities were found. The model also allows to study pathological triggers, such as e.g. hydrogen peroxide markedly increased propidiumiodide-positive nuclei in the hippocampus. In conclusion, our novel model provides an easy potent whole sagittal brain culture system that allows to study cholinergic and dopaminergic neurons together but also in close interaction with all other cells of the brain and with capillaries. It will be a great challenge in future to use this model to re-construct whole pathways. This vibrosection model may partly represent a close adult in vivo situation, which allows to study neurodegeneration and neuroprotection of cholinergic and dopaminergic neurons, which plays an important role in Alzheimer's and Parkinson's disease, respectively.
Collapse
Affiliation(s)
- Celine Ullrich
- Laboratory of Psychiatry and Exp. Alzheimeŕs Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Austria
| | | | | |
Collapse
|
37
|
Knaryan VH, Samantaray S, Le Gal C, Ray SK, Banik NL. Tracking extranigral degeneration in animal models of Parkinson's disease: quest for effective therapeutic strategies. J Neurochem 2011; 118:326-38. [PMID: 21615738 DOI: 10.1111/j.1471-4159.2011.07320.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages. Existing symptomatic treatments further complicate with overt drug-irresponsive symptoms. PD is better understood by assimilation of extranigral degenerative pathways with nigrostriatal degenerative mechanisms. The term 'extranigral' appeared first in the 1990s to more rigorously define the nigral pathology by process of elimination. However, as clinicians progressively identified PD symptoms unresponsive to the gold standard drug l-DOPA, definitions of PD symptoms were redefined. Non-motor symptoms prodromal to motor symptoms just as pre-clinical to clinical, and conjointly emerged the concept of nigral versus extranigral degeneration in PD. While nigrostriatal degeneration is responsible for the neurobiological substrates of extrapyramydal motor features, extranigral degeneration corroborates a vast majority of other changes in discrete central, peripheral, and enteric nervous system nuclei, which together account for global symptoms of the human disease. As an extranigral site, spinal cord degeneration has also been implicated in PD progression. Interconnected to the upper CNS structures with descending and ascending pathways, spinal neurons participate in movement and sensory circuits, controlling movement and reflexes. Several clinical and in vivo studies have demonstrated signs of parkinsonism-related degenerative processes in spinal cord, which led to recent consideration of spinal cord as an area of potential therapeutic target. In a nutshell, this review explores how the existing animal models can actually reflect the human disease in order to facilitate PD research. Evolution of extranigral degeneration studies has been succinctly revisited, followed by a survey on animal models in light of recent findings in clinical PD. Together, it may help to develop effective therapeutic strategies for PD.
Collapse
Affiliation(s)
- Varduhi H Knaryan
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|