1
|
Abstract
Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.
Collapse
Affiliation(s)
- Atef Mannaa
- Borg AlArab Higher Institute of Engineering and Technology , New Borg AlArab City , Alexandria , Egypt
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty , University of Cologne , Joseph-Stelzmann-Str. 52 , 50931 Cologne , Germany
| |
Collapse
|
2
|
Lacoste MG, Ponce IT, Golini RL, Delgado SM, Anzulovich AC. Aging modifies daily variation of antioxidant enzymes and oxidative status in the hippocampus. Exp Gerontol 2016; 88:42-50. [PMID: 27940169 DOI: 10.1016/j.exger.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aging is a complex and multifactorial biological process that leads to the progressive deterioration of physiological systems, including the circadian system. In addition, oxidative stress has been associated with the aging of the normal brain and the development of late-onset neurodegenerative diseases. Even though, functional weakening of circadian rhythms and antioxidant function has been observed during aging, the mechanisms by which the circadian system signaling and oxidative stress are interrelated have not yet been elucidated. The objectives of this study were to evaluate the consequences of aging on the temporal organization of the antioxidant defense system and oxidative status as well as to analyze the endogenous clock activity, in the hippocampus of aged rats. METHODS Young adults (3-month-old) or older (22-month-old) male Holtzman rats were maintained under constant darkness conditions, during 15days before the sacrifice. Levels of catalase (CAT) and glutathione peroxidase (GPx) mRNA and activity, reduced glutathione (GSH), lipoperoxidation (LPO) and BMAL1 protein were analyzed in hippocampus samples isolated every 4h during a 24-h period. Locomotor activity was recorded during 20days before the experiment. RESULTS Our results show that aging modifies temporal patterns of CAT and GPx expression and activity in the hippocampus in a different way. On the one hand, it abolishes the oscillating CAT expression and specific enzymatic activity while, on the other, it increases the mesor of circadian GPx activity rhythm (p<0.01). Additionally, we observed increased GSH (p<0.05) and reduced LPO (p<0.01) levels in the hippocampus of aged rats. Moreover, the nocturnal locomotor activity was reduced in the older animals in comparison to the young adult rats (p<0.01). Interestingly, the 22month-old animals became arrhythmic and showed a marked fragmentation as well as a significant decline in daily locomotor activity when they were maintained under constant darkness conditions (p<0.05). Aging also abolished circadian rhythms of the core clock BMAL1 protein. CONCLUSION The loss of temporal organization of the antioxidant enzymes activity, the oxidative status and the cellular clock machinery could result in a temporally altered antioxidant defense system in the aging brain. Learning about how aging affects the circadian system and the expression of genes involved in the antioxidant defense system could contribute to the design of new strategies to improve the quality of life of older people and also to promote a healthy aging.
Collapse
Affiliation(s)
- María Gabriela Lacoste
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina.
| | - Ivana Tamara Ponce
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Rebeca Laura Golini
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Silvia Marcela Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina; Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| |
Collapse
|
3
|
Nemutlu E, Gupta A, Zhang S, Viqar M, Holmuhamedov E, Terzic A, Jahangir A, Dzeja P. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PLoS One 2015; 10:e0136556. [PMID: 26378442 PMCID: PMC4574965 DOI: 10.1371/journal.pone.0136556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anu Gupta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria Viqar
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
- * E-mail: (PD); (AJ)
| | - Petras Dzeja
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PD); (AJ)
| |
Collapse
|
4
|
Barshishat-Kupper M, McCart EA, Freedy JG, Tipton AJ, Nagy V, Kim SY, Landauer MR, Mueller GP, Day RM. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation. Proteomes 2015; 3:249-265. [PMID: 28248270 PMCID: PMC5217375 DOI: 10.3390/proteomes3030249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127-189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure.
Collapse
Affiliation(s)
- Michal Barshishat-Kupper
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Elizabeth A McCart
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - James G Freedy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Ashlee J Tipton
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Vitaly Nagy
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Sung-Yop Kim
- Operational Dosimetry Division, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Michael R Landauer
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Gregory P Mueller
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Regina M Day
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
5
|
Li W, Wang W, Li Y, Wang W, Wang T, Li L, Han Z, Wang S, Ma D, Wang H. Proteomics analysis of normal and senescent NG108-15 cells: GRP78 plays a negative role in cisplatin-induced senescence in the NG108-15 cell line. PLoS One 2014; 9:e90114. [PMID: 24621580 PMCID: PMC3951507 DOI: 10.1371/journal.pone.0090114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/28/2014] [Indexed: 01/29/2023] Open
Abstract
Accelerated senescence (ACS) leading to proliferative arrest is a physiological mechanism of the DNA damage response that occurs during tumor therapy. Our experiment was designed to detect unknown genes that may play important roles in cisplatin-induced senescence and to illustrate the related senescence mechanism. Using 2-dimension electrophoresis (2-DE), we identified 5 protein spots with different expression levels in the normal and senescent NG108-15 cells. According to MALDI-TOF MS analysis, the 5 proteins were determined to be peptidylprolyl isomerase A (PPIA), peroxiredoxin 1 (PRX1), glutathione S-transferase mu 1 (GSTM1), vimentin (VIM) and glucose-regulated protein 78 (GRP78). Then, we investigated how cisplatin-induced senescence was mediated by GRP78 in the NG108-15 cells. Knockdown of GRP78 significantly increased P53 expression in NG108-15 cells. Additionally, 2-deoxy-D-glucose (2DG)-induced GRP78 overexpression protected the NG108-15 cells from cisplatin-induced senescence, which was accompanied by the obvious suppression of P53 and p-CDC2 expression. Inhibition of Ca2+ release from endoplasmic reticulum (ER) stores was also found to be associated with the anti-senescence effect of 2DG-induced GRP78 overexpression. In conclusion, we found 5 proteins that were differentially expressed in normal NG108-15 cells and senescent NG108-15 cells. GRP78 plays an important role in cisplatin-induced senescence in NG108-15 cells, mainly through its regulation of P53 expression and ER calcium efflux.
Collapse
Affiliation(s)
- Wei Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei Wang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yan Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wenwen Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tian Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Li Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhiqiang Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Shixuan Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- * E-mail: (DM); (HW)
| | - Hui Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- * E-mail: (DM); (HW)
| |
Collapse
|
6
|
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. MASS SPECTROMETRY REVIEWS 2014; 33:79-97. [PMID: 23832618 DOI: 10.1002/mas.21381] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
Protein carbonylation, one of the most harmful irreversible oxidative protein modifications, is considered as a major hallmark of oxidative stress-related disorders. Protein carbonyl measurements are often performed to assess the extent of oxidative stress in the context of cellular damage, aging and several age-related disorders. A wide variety of analytical techniques are available to detect and quantify protein-bound carbonyls generated by metal-catalyzed oxidation, lipid peroxidation or glycation/glycoxidation. Here we review current analytical approaches for protein carbonyl detection with a special focus on mass spectrometry-based techniques. The utility of several carbonyl-derivatization reagents, enrichment protocols and especially advanced mass spectrometry techniques are compared and discussed in detail. Furthermore, the mechanisms and biology of protein carbonylation are summarized based on recent high-throughput proteomics data.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany
| | | | | |
Collapse
|
7
|
Cabiscol E, Tamarit J, Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. MASS SPECTROMETRY REVIEWS 2014; 33:21-48. [PMID: 24114980 DOI: 10.1002/mas.21375] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | | | | |
Collapse
|
8
|
Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013; 92:110-31. [PMID: 23770299 DOI: 10.1016/j.jprot.2013.06.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
9
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
10
|
Hollins BC, Soper SA, Feng J. Enriching carbonylated proteins inside a microchip through the use of oxalyldihydrazide as a crosslinker. LAB ON A CHIP 2012; 12:2526-2532. [PMID: 22565136 DOI: 10.1039/c2lc40103g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report a proof of principle study for the use of oxalyldihydrazide as a crosslinker for enrichment of carbonylated proteins within a microfluidic chip. Surface modification steps are characterized and analyzed using analytical techniques. We use oxidized cytochrome c as our model protein and demonstrate the chip's ability to capture carbonylated targets. After 100 min of continuous loading, the chip is capable of capturing 7.5 μg of carbonylated protein. All the proteins captured are eluted out of the chip using the elution protocol. Finally, we demonstrate the chip's specificity for oxidized targets by mixing oxidized cytochrome c and TRITC-BSA, with cytochrome c in low abundance. The results show that the chip is efficient at finding its target when unoxidized proteins are present. This is the first report to suggest the use of immobilized oxalyldihydrazide on a microchip as an enrichment methodology for low abundance proteins in a sample.
Collapse
Affiliation(s)
- Bryant C Hollins
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
| | | | | |
Collapse
|
11
|
Girish C, Muralidhara. Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson's disease. Neurotoxicology 2012; 33:444-56. [DOI: 10.1016/j.neuro.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 12/16/2022]
|
12
|
Fritz KS, Petersen DR. Exploring the biology of lipid peroxidation-derived protein carbonylation. Chem Res Toxicol 2011; 24:1411-9. [PMID: 21812433 DOI: 10.1021/tx200169n] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sustained overproduction of reactive oxygen and nitrogen species results in an imbalance of cellular prooxidant-antioxidant systems and is implicated in numerous disease states, including alcoholic liver disease, cancer, neurological disorders, inflammation, and cardiovascular disease. The accumulation of reactive aldehydes resulting from sustained oxidative stress and lipid peroxidation is an underlying factor in the development of these pathologies. Determining the biochemical factors that elicit cellular responses resulting from protein carbonylation remains a key element to developing therapeutic approaches and ameliorating disease pathologies. This review details our current understanding of the generation of reactive aldehydes via lipid peroxidation resulting in protein carbonylation, focusing on pathophysiologic factors associated with 4-hydroxynonenal-protein modification. Additionally, an overview of in vitro and in vivo model systems used to study the physiologic impact of protein carbonylation is presented. Finally, an update of the methods commonly used in characterizing protein modification by reactive aldehydes provides an overview of isolation techniques, mass spectrometry, and computational biology. It is apparent that research in this area employing state-of-the-art proteomics, mass spectrometry, and computational biology is rapidly evolving, yielding foundational knowledge concerning the molecular mechanisms of protein carbonylation and its relation to a spectrum of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
13
|
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14:2013-54. [PMID: 20649473 PMCID: PMC3078504 DOI: 10.1089/ars.2010.3208] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
14
|
Abstract
Oxidative stress is thought to be a contributing factor in many chronic neurodegenerative pathologies, as well as acute cerebrovascular disorders such as stroke. Peroxiredoxins are a family of antioxidant enzymes that reduce peroxides directly through the use of a redox active cysteine within their active site, which in the process becomes oxidized. In order to cycle back to the reduced state, many peroxiredoxins rely on thiol-dependent reduction by the ubiquitous antioxidant enzyme thioredoxin. Peroxiredoxins, together with thioredoxin and thioredoxin's own 'recycling enzyme', thioredoxin reductase, represent an antioxidant enzymic system of growing significance in the context of neuronal physiology and pathology. Overexpression, knockdown, and knockout approaches have demonstrated an important role for peroxiredoxins in protecting neurons from oxidative insults. It is also becoming clear that neuronal peroxiredoxins are subjected to post-translational modifications that impair function as part of disease pathology. Conversely, components of this pathway are also subject to dynamic upregulation such as via endogenous synaptic activity-dependent signaling and induction of the Nrf2-dependent Phase II response. As such, the thioredoxin-peroxiredoxin system represents a potential therapeutic target for central nervous system disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Karen F S Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | |
Collapse
|
15
|
Rodrigo AC, Rivilla I, Pérez-Martínez FC, Monteagudo S, Ocaña V, Guerra J, García-Martínez JC, Merino S, Sánchez-Verdú P, Ceña V, Rodríguez-López J. Efficient, Non-Toxic Hybrid PPV-PAMAM Dendrimer as a Gene Carrier for Neuronal Cells. Biomacromolecules 2011; 12:1205-13. [DOI: 10.1021/bm1014987] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ana C. Rodrigo
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Iván Rivilla
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | | | | | - Vanessa Ocaña
- Unidad Asociada Neurodeath, Facultad de Medicina, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006-Albacete, Spain
| | - Javier Guerra
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
- NanoDrugs, S. L., P° de la Innovación 1, 02071-Albacete, Spain
| | - Joaquín C. García-Martínez
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Sonia Merino
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Prado Sánchez-Verdú
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, CSIC-UCLM, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006-Albacete, Spain
- CIBERNED, Instituto de salud Carlos III, C/Sinesio Delgado 6, 28071-Madrid, Spain
| | - Julián Rodríguez-López
- Facultad de Química, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13071-Ciudad Real, Spain
| |
Collapse
|
16
|
Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes. Neurochem Res 2010; 35:1880-915. [DOI: 10.1007/s11064-010-0307-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
|
17
|
Abstract
Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post-translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the alpha-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and a wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing the identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation.
Collapse
Affiliation(s)
- Ashraf G. Madian
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| | - Fred E. Regnier
- Chemistry Department, Purdue University, West Lafayette, IN, USA, 47907
| |
Collapse
|