1
|
Renko JM, Bäck S, Voutilainen MH, Piepponen TP, Reenilä I, Saarma M, Tuominen RK. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Elevates Stimulus-Evoked Release of Dopamine in Freely-Moving Rats. Mol Neurobiol 2018; 55:6755-6768. [PMID: 29349573 PMCID: PMC6061195 DOI: 10.1007/s12035-018-0872-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/07/2018] [Indexed: 01/12/2023]
Abstract
Neurotrophic factors (NTFs) hold potential as disease-modifying therapies for neurodegenerative disorders like Parkinson's disease. Glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), and mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown neuroprotective and restorative effects on nigral dopaminergic neurons in various animal models of Parkinson's disease. To date, however, their effects on brain neurochemistry have not been compared using in vivo microdialysis. We measured extracellular concentration of dopamine and activity of dopamine neurochemistry-regulating enzymes in the nigrostriatal system of rat brain. NTFs were unilaterally injected into the striatum of intact Wistar rats. Brain microdialysis experiments were performed 1 and 3 weeks later in freely-moving animals. One week after the treatment, we observed enhanced stimulus-evoked release of dopamine in the striatum of MANF-treated rats, but not in rats treated with GDNF or CDNF. MANF also increased dopamine turnover. Although GDNF did not affect the extracellular level of dopamine, we found significantly elevated tyrosine hydroxylase (TH) and catechol-O-methyltransferase (COMT) activity and decreased monoamine oxidase A (MAO-A) activity in striatal tissue samples 1 week after GDNF injection. The results show that GDNF, CDNF, and MANF have divergent effects on dopaminergic neurotransmission, as well as on dopamine synthetizing and metabolizing enzymes. Although the cellular mechanisms remain to be clarified, knowing the biological effects of exogenously administrated NTFs in intact brain is an important step towards developing novel neurotrophic treatments for degenerative brain diseases.
Collapse
Affiliation(s)
- Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| | - Susanne Bäck
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Ilkka Reenilä
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, Research Program in Developmental Biology, University of Helsinki, Viikinkaari 5D, P.O. Box 56, 00014, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
2
|
Sotoyama H, Iwakura Y, Oda K, Sasaoka T, Takei N, Kakita A, Enomoto H, Nawa H. Striatal hypodopamine phenotypes found in transgenic mice that overexpress glial cell line-derived neurotrophic factor. Neurosci Lett 2017. [PMID: 28645787 DOI: 10.1016/j.neulet.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) positively regulates the development and maintenance of in vitro dopaminergic neurons. However, the in vivo influences of GDNF signals on the brain dopamine system are controversial and not fully defined. To address this question, we analyzed dopaminergic phenotypes of the transgenic mice that overexpress GDNF under the control of the glial Gfap promoter. Compared with wild-type, the GDNF transgenic mice contained higher levels of GDNF protein and phosphorylated RET receptors in the brain. However, there were reductions in the levels of tyrosine hydroxylase (TH), dopamine, and its metabolite homovanillic acid in the striatum of transgenic mice. The TH reduction appeared to occur during postnatal development. Immunohistochemistry revealed that striatal TH density was reduced in transgenic mice with no apparent signs of neurodegeneration. In agreement with these neurochemical traits, basal levels of extracellular dopamine and high K+-induced dopamine efflux were decreased in the striatum of transgenic mice. We also explored the influences of GDNF overexpression on lomomotor behavior. GDNF transgenic mice exhibited lower stereotypy and rearing in a novel environment compared with wild-type mice. These results suggest that chronic overexpression of GDNF in brain astrocytes exerts an opposing influence on nigrostriatal dopamine metabolism and neurotransmission.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Kanako Oda
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Japan
| | - Hideki Enomoto
- Laboratory for Neural Differentiation and Regeneration, Graduate School of Medicine, Kobe University, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Japan.
| |
Collapse
|
3
|
Cass WA, Peters LE. Reduced ability of calcitriol to promote augmented dopamine release in the lesioned striatum of aged rats. Neurochem Int 2017; 108:222-229. [PMID: 28390950 DOI: 10.1016/j.neuint.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a progressive and debilitating neurodegenerative disorder that affects over one million people in the United States. Previous studies, carried out in young adult rats, have shown that calcitriol, the active metabolite of vitamin D, can be neuroprotective in 6-hydroxydopamine (6-OHDA) models of PD. However, as PD usually affects older individuals, the ability of calcitriol to promote dopaminergic recovery was examined in lesioned young adult (4 month old), middle-aged (14 month old) and aged (22 month old) rats. Animals were given a single injection of 12 μg 6-OHDA into the right striatum. Four weeks later they were administered vehicle or calcitriol (1.0 μg/kg, s.c.) once a day for eight consecutive days. In vivo microdialysis experiments were carried out three weeks after the calcitriol or vehicle treatments to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. The calcitriol treatments significantly increased evoked overflow of DA from the lesioned striatum in both the young adult and middle-aged rats. However, the calcitriol treatments did not significantly augment DA overflow in the aged rats. Postmortem tissue levels of striatal DA were also increased in the young and middle-aged animals, but not in the aged animals. In the substantia nigra, the calcitriol treatments led to increased levels of DA in all three age groups. Thus, the effects of calcitriol were similar in the young adult and middle-aged animals, but in the aged animals the effects of calcitriol were diminished. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons; however, the effectiveness of calcitriol may be reduced in aging.
Collapse
Affiliation(s)
- Wayne A Cass
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Laura E Peters
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
4
|
d'Anglemont de Tassigny X, Pascual A, López-Barneo J. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson's disease. Front Neuroanat 2015; 9:10. [PMID: 25762899 PMCID: PMC4327623 DOI: 10.3389/fnana.2015.00010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain ; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla Seville, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid, Spain
| |
Collapse
|
5
|
Differential effects of amphetamine and GBR-12909 on orolingual motor function in young vs aged F344/BN rats. Psychopharmacology (Berl) 2014; 231:4695-701. [PMID: 24923981 PMCID: PMC4301607 DOI: 10.1007/s00213-014-3620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Orolingual motor deficits, such as dysarthria and dysphagia, contribute to increased morbidity and mortality in the elderly. In preclinical studies, we and others have reported age-related decreases in tongue motility in both F344 and F344/BN rats. The fact that these deficits are associated with nigrostriatal dopamine (DA), tissue measures suggest that increasing dopamine function might normalize tongue motility. OBJECTIVE The purpose of the current study was to determine whether two indirect dopamine agonists with locomotor-enhancing effects, d-amphetamine (amphetamine; 1 and 2 mg/kg) and GBR-12909 (5, 10, and 20 mg/kg), can improve tongue motility in aged F344/BN rats. METHODS Young (6 months) and aged (30 months) F344/BN rats licked water from an isometric force disc so that tongue motility (licks/second) and tongue force could be measured as a function of age and drug dose. RESULTS Consistent with our previous studies, tongue force was greater and tongue motility was lower in the aged group. Tongue motility was increased by amphetamine but not by GBR-12909. Amphetamine decreased peak tongue force, primarily in the young group. GBR-12909 did not affect tongue force. GBR-12909 increased the number of licks/session in the young group but not in the aged group, while amphetamine increased this measure in both groups. CONCLUSION These results demonstrate differential effects of these drugs on orolingual motor function and suggest that blocking DA uptake is insufficient to increase tongue motility in aging.
Collapse
|
6
|
Cass WA, Peters LE, Fletcher AM, Yurek DM. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats. Neurochem Res 2014; 39:1467-76. [PMID: 24858239 DOI: 10.1007/s11064-014-1331-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Current therapies for Parkinson's disease (PD) offer symptomatic relief but do not provide a cure or slow the disease process. Treatments that could halt progression of the disease or help restore function to damaged neurons would be of substantial benefit. Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These effects include upregulating trophic factor levels, and reducing the severity of some central nervous system lesions. While previous studies have shown that calcitriol can be neuroprotective in 6-hydroxydopamine (6-OHDA) rodent models of PD, the present experiments were designed to examine the ability of calcitriol to promote restoration of extracellular dopamine (DA) levels and tissue content of DA in animals previously lesioned with 6-OHDA. Male Fischer-344 rats were given a single injection of 12 µg 6-OHDA into the right striatum. Four weeks later the animals were administered vehicle or calcitriol (0.3 or 1.0 µg/kg, s.c.) once a day for eight consecutive days. Three weeks after the calcitriol treatments in vivo microdialysis experiments were conducted to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in both potassium and amphetamine evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. In animals treated with 6-OHDA followed by calcitriol there was significantly greater potassium and amphetamine evoked overflow of DA from the lesioned striatum compared to that from the control animals. The calcitriol treatments also led to increases in postmortem tissue levels of DA in the striatum and substantia nigra. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons.
Collapse
Affiliation(s)
- Wayne A Cass
- Department of Anatomy and Neurobiology, MN-225 Chandler Medical Center, University of Kentucky College of Medicine, Lexington, KY, 40536-0298, USA,
| | | | | | | |
Collapse
|
7
|
Cass WA, Peters LE, Fletcher AM, Yurek DM. Evoked dopamine overflow is augmented in the striatum of calcitriol treated rats. Neurochem Int 2011; 60:186-91. [PMID: 22133428 DOI: 10.1016/j.neuint.2011.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/08/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022]
Abstract
Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These actions include reducing the severity of some central nervous system lesions, possibly by upregulating trophic factors such as glial cell line-derived neurotrophic factor (GDNF). GDNF has substantial effects on the nigrostriatal dopamine (DA) system of young adult, aged and lesioned animals. Thus, the administration of calcitriol may lead to significant effects on nigrostriatal DA neuron functioning. The present experiments were designed to examine the ability of calcitriol to alter striatal DA release, and striatal and nigral tissue levels of DA. Male Fischer-344 rats were administered vehicle or calcitriol (0.3, 1.0, or 3.0 μg/kg, s.c.) once daily for eight consecutive days. Three weeks later in vivo microdialysis experiments were conducted to measure basal and stimulus evoked overflow of DA from the striatum. Basal levels of extracellular DA were not significantly affected by the calcitriol treatments. However, the 1.0 and 3.0 μg/kg doses of calcitriol led to increases in both potassium and amphetamine evoked overflow of striatal DA. Although post-mortem tissue levels of striatal DA were not altered by the calcitriol injections, nigral tissue levels of DA and its main metabolites were increased by both the 1.0 and 3.0 μg/kg doses of calcitriol. In a separate group of animals GDNF levels were augmented in the striatum and substantia nigra after eight consecutive daily injections of calcitriol. These results suggest that systemically administered calcitriol can upregulate dopaminergic release processes in the striatum and DA levels in the substantia nigra. Increases in the levels of endogenous GDNF following calcitriol treatment may in part be responsible for these changes. The ability of calcitriol to lead to augmented DA release in the striatum suggests that calcitriol may be beneficial in disease processes involving dopaminergic dysfunction.
Collapse
Affiliation(s)
- Wayne A Cass
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
8
|
Neurotrophic factors for the treatment of Parkinson's disease. Cytokine Growth Factor Rev 2011; 22:157-65. [DOI: 10.1016/j.cytogfr.2011.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/20/2011] [Indexed: 11/20/2022]
|
9
|
Cass WA, Peters LE. Neurturin protects against 6-hydroxydopamine-induced reductions in evoked dopamine overflow in rat striatum. Neurochem Int 2010; 57:540-6. [PMID: 20615442 DOI: 10.1016/j.neuint.2010.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/25/2010] [Accepted: 06/28/2010] [Indexed: 11/17/2022]
Abstract
Neurturin (NTN), a member of the glial cell line-derived neurotrophic factor (GDNF) family, has substantial effects on normal and lesioned nigrostriatal dopamine systems. However, its ability to protect against toxin-induced loss of striatal dopamine release has not been previously reported. The goal of the present study was to determine if NTN could protect against 6-hydroxydopamine (6-OHDA)-induced reductions in striatal dopamine overflow and tissue levels of dopamine and to compare the effects of NTN with those of GDNF. Male Fischer-344 rats were given a single injection of vehicle, or 5 microg NTN or GDNF, into the right striatum. The following day the animals were given a single injection of 12 microg 6-OHDA into the striatum at the same site where the trophic factor was injected. Microdialysis experiments conducted three weeks later indicated that the 6-OHDA decreased basal levels of dopamine and metabolites in the lesioned striatum compared to the contralateral striatum, and NTN was able to partially protect against the 6-OHDA-induced reductions. Injection of NTN one day prior to 6-OHDA also led to significant protection against loss of both potassium- and amphetamine-evoked overflow of dopamine. The NTN treatments partially protected against 6-OHDA-induced reductions in striatal tissue levels of dopamine and completely protected against loss of nigral dopamine content. The protective effects of NTN were similar in magnitude to those of GDNF. These results support that within the experimental parameters used in this study, NTN is as effective as GDNF in protecting against the dopamine-depleting effects of intrastriatal 6-OHDA.
Collapse
Affiliation(s)
- Wayne A Cass
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
10
|
Souza RP, de Luca V, Remington G, Lieberman JA, Meltzer HY, Kennedy JL, Wong AHC. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia. Psychopharmacology (Berl) 2010; 210:347-54. [PMID: 20369355 DOI: 10.1007/s00213-010-1829-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 03/09/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) has a pharmacogenetic component in which the interaction of antipsychotic exposure with individual genetic variation mediates risk. The glial cell line-derived neurotrophic factor (GDNF) signalling pathway has been associated with neuroprotective effects in central dopaminergic neurons and spinal motor neurons. Clinical trials have also investigated whether GDNF may ameliorate Parkinson's disease symptoms. METHODS We tested whether variants in the GDNF receptor alpha 2 (GFRA2) gene could play a role in TD susceptibility evaluating 16 variants in 172 Caucasian schizophrenia subjects. RESULTS We observed one significant allelic association (rs4739285, permuted p = 0.042) and two genotypic associations: rs4739285 under additive inheritance model and rs4739217 under dominant inheritance model (permuted p = 0.044). Moreover, carriers of the major alleles for both rs6587002 and rs4739217 presented significantly higher risk for TD (OR = 2.04, permuted p = 0.014), while subjects with the minor allele for rs4739217 and the major allele for rs6988470 were less likely to have TD (OR = 0.21, permuted p = 0.0007). DISCUSSION Haplotype results indicate that the minor allele of the rs4739217 is a risk factor for TD (permuted allelic p = 0.074). Age was also a risk factor for TD in our sample (p = 0.0001). Taken together, our findings suggest that GFRA2 genetic variants and age may play a role in TD susceptibility, but further work is required to confirm these findings.
Collapse
Affiliation(s)
- Renan P Souza
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|