1
|
Fedorov NS, Sibgatullina GV, Malomouzh AI. Impairment of Skeletal Muscle Contraction by Inhibitors of GABA Transporters. Int J Mol Sci 2024; 25:12510. [PMID: 39684222 DOI: 10.3390/ijms252312510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
γ-Aminobutyric acid (GABA) has a significant impact on the functioning of not only the central but also the peripheral part of the nervous system. Recently, various elements of the GABAergic signaling system have been discovered in the area of the neuromuscular junction of mammals. At the same time, the functional activity of membrane-bound GABA transporters (GATs) and their role in neuromuscular transmission have not been identified. In the present study, performed on a neuromuscular preparation of the mouse diaphragm, the effect of GABA transporter inhibitors (nipecotic acid and β-alanine) on the force of muscle contraction was assessed. It was found that in the presence of both compounds in the bathing solution, the force of contractions caused by stimulation of the motor nerve dropped by 30-50%. However, when the muscle was stimulated directly, no effect of GABA transporter inhibitors on the contractile force was observed. The depressant effect of β-alanine induced by nerve stimulation was completely abolished by the GABAB receptor blocker CGP 55845. GABA transporters were detected at the neuromuscular junction using immunohistochemistry. Thus, our results indicate that GABA transporters are localized in the area of the neuromuscular junction, and their activity affects the muscle contraction force. This influence is most likely due to the removal of GABA released during nerve stimulation and activating GABA receptors, which leads to a decrease in the contraction force of the striated muscles.
Collapse
Affiliation(s)
- Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, P.O. Box 30, Kazan 420111, Russia
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, P.O. Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, P.O. Box 30, Kazan 420111, Russia
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University, 10 K. Marx St., Kazan 420111, Russia
| |
Collapse
|
2
|
Bhatt M, Lazzarin E, Alberto-Silva AS, Domingo G, Zerlotti R, Gradisch R, Bazzone A, Sitte HH, Stockner T, Bossi E. Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1). Cell Mol Life Sci 2024; 81:269. [PMID: 38884791 PMCID: PMC11335192 DOI: 10.1007/s00018-024-05309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K0.5. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Guido Domingo
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Rocco Zerlotti
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Ralph Gradisch
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstr. 70a, 80339, Munich, Germany
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elena Bossi
- Department of Biotechnology and Life Science, Laboratory of Cellular and Molecular Physiology, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
- Centre for Neuroscience, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
3
|
Matsuno T, Kiyokage E, Toida K. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb. J Comp Neurol 2017; 525:1633-1648. [PMID: 27864926 DOI: 10.1002/cne.24148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/07/2022]
Abstract
Mitral cells are the major projection neurons of the olfactory bulb. They receive olfactory inputs, regulate information, and project their axons to the olfactory cortex. To understand output regulation of mitral cells better, we established a method to visualize individual projection neurons and quantitatively examined their synaptic distribution. Individual mitral cells were labeled by viral injection, reconstructed three dimensionally with light microscopy, and serial sectioned for electron microscopy. Synaptic distributions were analyzed in electron microscopically reconstructed cell bodies, two regions of secondary dendrites (near the somata and ∼200 μm from the somata), and primary dendrites. The ratio of presynaptic sites (60%) and reciprocal synapses (60% presynaptic and 80% postsynaptic sites) were similar in each region. Characteristically, primary dendrite synapses were distributed mainly within the inner half of the external plexiform layer (EPL). For comparison, tufted cells were also examined, and the synaptic distribution in two secondary dendrite regions, which corresponded with mitral cells, was analyzed. The results showed that the ratio of reciprocal synapses (80% presynaptic and 90% postsynaptic sites) was greater than in mitral cells. The distribution of symmetrical synapses was also analyzed with synaptic and neuronal markers, such as parvalbumin, vesicular gamma-aminobutyric acid transporter, and gephyrin. Parvalbumin-expressing neurons tended to form synapses on secondary dendrites near the somata and were more uniformly distributed on primary dendrites of mitral cells. These results indicate that local mitral cell synaptic circuits are formed in accordance with their functional roles and restricted to the inner half of the EPL. J. Comp. Neurol. 525:1633-1648, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takeshi Matsuno
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Wang P, Eshaq RS, Meshul CK, Moore C, Hood RL, Leidenheimer NJ. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Front Cell Neurosci 2015; 9:188. [PMID: 26041994 PMCID: PMC4435044 DOI: 10.3389/fncel.2015.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Charles K Meshul
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Cynthia Moore
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Rebecca L Hood
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| |
Collapse
|
5
|
Schousboe A, Waagepetersen HS, Leke R, Bak LK. Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metab Brain Dis 2014; 29:913-7. [PMID: 24577633 DOI: 10.1007/s11011-014-9513-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/14/2014] [Indexed: 12/21/2022]
Abstract
The literature related to the effects of elevated plasma ammonia levels on brain energy metabolism is abundant, but heterogeneous in terms of the conclusions. Thus, some studies claim that ammonia has a direct, inhibitory effect on energy metabolism whereas others find no such correlation. In this review, we discuss both recent and older literature related to this controversial topic. We find that it has been consistently reported that hepatic encephalopathy and concomitant hyperammonemia lead to reduced cerebral oxygen consumption. However, this may not be directly linked to an effect of ammonia but related to the fact that hepatic encephalopathy is always associated with reduced brain activity, a condition clearly characterized by a decreased CMRO2. Whether this may be related to changes in GABAergic function remains to be elucidated.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|