1
|
Jiang Y, Liu L, Steinle JJ. miRNA15a regulates insulin signal transduction in the retinal vasculature. Cell Signal 2018; 44:28-32. [PMID: 29339083 DOI: 10.1016/j.cellsig.2018.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
We previously reported that tumor necrosis factor alpha (TNFα) could inhibit insulin signal transduction in retinal cells. We recently found that miR15a/16 also reduced TNFα in retinal endothelial cells (REC) and in vascular specific miR15a/16 knockout mice. Since in silico programs suggested that miR15a could directly bind the insulin receptor, we wanted to determine whether miR15a altered insulin signal transduction. We used a luciferase-based binding assay to determine whether miR15a directly bound the insulin receptor. We then used Western blotting, ELISA, and qPCR to investigate whether miR15a altered insulin signaling proteins in REC and in both miR15a/16 endothelial cell knockout and overexpressing mice. We also treated some REC with resveratrol to determine if resveratrol could increase miR15a expression, since resveratrol is protective to the diabetic retina. We found that miR15a directly bound the 3'UTR of the insulin receptor. Treatment with resveratrol increased miR15a expression in REC grown in high glucose. While total insulin receptor levels were not altered, insulin signal transduction was reduced in REC grown in high glucose and was restored with treatment with resveratrol. miR15a knockout mice had reduced insulin receptor phosphorylation and Akt2 levels, with increased insulin receptor substrate 1 (IRS-1) phosphorylation on serine 307, a site known to inhibit insulin signaling. In contrast, overexpression of miR15a increased insulin signal transduction. Taken together, these data suggest that miR15a binds the insulin receptor and indirectly regulates insulin receptor actions. It also offers an additional mechanism by which resveratrol is protective to the diabetic retina.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
2
|
Qiao Y, Fan CL, Tang MK. Astragaloside IV protects rat retinal capillary endothelial cells against high glucose-induced oxidative injury. Drug Des Devel Ther 2017; 11:3567-3577. [PMID: 29263652 PMCID: PMC5732560 DOI: 10.2147/dddt.s152489] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim Diabetic retinopathy is a microvascular complication of diabetes that leads to blindness. Hyperglycemia causes oxidative stress, which is an important cause in the pathogenesis of microangiopathy. The aim of this study was to investigate the potential protective effects of astragaloside IV (AS-IV) in retinal capillary endothelial cells (RCECs) incubated with high glucose conditions. Methods and results Based on rat RCECs cultured with high glucose (30 mM) in vitro, a significant increase in cell viability in rat RCECs incubated with both AS-IV and high glucose for 48 or 72 h by MTT assay. The increased viability was accompanied by decreased glucose transporter-1 expression using immunofluorescent assay. Meanwhile, AS-IV reduced intracellular hydrogen peroxide and superoxide, decreased mitochondrial reactive oxygen species in rat RCECs with high glucose by the fluorescent probes, and lowered malondialdehyde levels. In addition, AS-IV increased the activities of total superoxide dismutase, MnSOD, catalase, and glutathione peroxidase. The glutathione content also increased after AS-IV treatment. Furthermore, AS-IV reduced NADPH oxidase 4 expression by western blot method. Conclusion These results suggest that the main mechanism underlying the protective effects of AS-IV in high glucose-injured RCECs may be related to its antioxidative function.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Chun-Lan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Min-Ke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
3
|
Fan C, Qiao Y, Tang M. Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3343-3354. [PMID: 29200830 PMCID: PMC5703151 DOI: 10.2147/dddt.s149700] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to examine whether Notoginsenoside R1 (NR1) attenuates high glucose-induced cell damage in rat retinal capillary endothelial cells (RCECs) and to explore the mechanisms involved. The exposure of rat RCECs to high concentration of glucose (30 mM) for 72 h led to significant cytotoxicity, including decreased cell viability, reduced mitochondrial DNA copy number, increased lactate dehydrogenase release and elevated apoptosis. NR1, when present in the culture medium, markedly attenuated the high glucose-induced cytotoxicity in rat RCECs. Moreover, high glucose also induced a significant increase in intracellular reactive oxygen species and subsequently increased the activity of NADPH oxidase and poly-ADP (ribose) polymerase, whereas the activity of catalase decreased. The addition of NR1 to the medium significantly reduced the generation of reactive oxygen species, inhibited NADPH oxidase and poly-ADP (ribose) polymerase activities and increased catalase activity in RCECs, accompanied by a reduced cellular nitrotyrosine level. To explore the underlying mechanisms involved, the cellular redox status was monitored. Both the cellular NAD+ and NADPH levels decreased significantly in high glucose medium, which resulted in a marked decrease in the NAD+/NADH and NADPH/NADP+ ratios. High glucose stimulation also enhanced the accumulation of GSSG, maintaining the GSH/GSSG ratio lower than that in the control group with 5.5 mM glucose. When treated with NR1, the cellular NAD+, NADPH and GSH concentrations increased, and the ratios of NAD+/NADH, NADPH/NADP+ and GSH/GSSG increased, similar to the control group. These results demonstrate that NR1 attenuates high glucose-induced cell damage in RCECs. Therefore, NR1 may exert its protective effects via mechanisms that involve changes in the cellular redox state.
Collapse
Affiliation(s)
- Chunlan Fan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuan Qiao
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Minke Tang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
4
|
The neuropeptide galanin promotes an anti-thrombotic phenotype on endocardial endothelial cells from heart failure patients. Auton Neurosci 2017; 206:35-42. [PMID: 28720509 DOI: 10.1016/j.autneu.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/06/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
Abstract
Thromboembolic complications are a significant cause of mortality and re-hospitalization in heart failure (HF) patients. One source of thrombi is the ventricular endocardial surface that becomes increasingly pro-thrombotic as HF progresses. Anticoagulation comes with bleeding risks so identifying therapeutic agents for improving cardiac endothelial health are of critical clinical importance. Endocardial endothelial cells are closely apposed to cardiac sympathetic nerves. In HF, cardiac sympathetic nerves are dysregulated and promote disease progression. Whether endocardial endothelial health and function is impacted by sympathetic dysregulation in HF is unknown. Also unexplored is the impact of neuropeptides, such as galanin and neuropeptide Y (NPY), co-released from sympathetic nerve terminals, on endothelial health. In this study we examined the effect of sympathetic nerve-released neurotransmitters and neuropeptides on the procoagulant phenotype of cultured human endocardial endothelial cells from HF patients. As a functional readout of procoagulant state we examined thrombin-mediated von Willebrand factor (vWF) extrusion and multimer expression. We demonstrate that vWF extrusion and multimer expression is promoted by thrombin, that isoproterenol (a beta-adrenergic receptor agonist) augments this effect, whereas co-treatment with the beta-blockers propranolol and carvedilol blocks this effect. We also show that vWF extrusion and multimer expression is attenuated by treatment with the neuropeptide galanin, but not with NPY. Our results are consistent with a protective role of beta-blockers and galanin on endocardial endothelial health in heart failure. Improving endothelial health through galanin therapy is a future clinical application of this study.
Collapse
|
5
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
6
|
Protective Effects of Panax notoginseng Saponins against High Glucose-Induced Oxidative Injury in Rat Retinal Capillary Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5326382. [PMID: 27019662 PMCID: PMC4785264 DOI: 10.1155/2016/5326382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
Diabetic retinopathy, a leading cause of visual loss and blindness, is characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for diabetic retinopathy and is associated with increased oxidative stress in the retina. In this study, we investigated the potential protective effects of Panax notoginseng Saponins (PNS) in retinal capillary endothelial cells (RCECs) exposed to high glucose conditions. We found a pronounced increase in cell viability in rat RCECs incubated with both PNS and high glucose (30 mM) for 48 h or 72 h. The increased viability was accompanied by reduced intracellular hydrogen peroxide (H2O2) and superoxide (O2−), decreased mitochondrial reactive oxygen species (ROS), and lowered malondialdehyde (MDA) levels. PNS also increased the activities of total superoxide dismutase (SOD), MnSOD, catalase (CAT), and glutathione peroxidase (GSH-PX). The glutathione (GSH) content also increased after PNS treatment. Furthermore, PNS reduced NADPH oxidase 4 (Nox4) expression. These results indicate that PNS exerts a protective effect against high glucose-induced injury in RCECs, which may be partially attributed to its antioxidative function.
Collapse
|
7
|
Wu JH, Wang YH, Wang W, Shen W, Sang YZ, Liu L, Chen CM. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 2016; 73:41-52. [PMID: 26851511 DOI: 10.1016/j.biocel.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are important for the proliferation of endothelial cells and have been shown to be involved in diabetic retinopathy (DR). In previous study, we found that miRNAs might play a critical role in hyperglycemia-induced endothelial cell proliferation based on miRNA expression profiling. Here, the roles of microRNA-18b (miR-18b) in the proliferation of human retinal endothelial cells (HRECs) were investigated in an in vitro model of HRECs grown in high glucose. We identified that levels of miR-18b were decreased in high-glucose-induced HRECs, compared with those in cells incubated in normal glucose. However, the reduction of miR-18b up-regulated vascular endothelial growth factor (VEGF) secretion and promoted effects on in vitro proliferation of HRECs. Mechanistically, insulin growth factor-1 (IGF-1) was identified as a target of miR-18b. IGF-1 simulation could antagonize the effect induced by miR-18b up-regulation, promoting cell proliferation and increasing VEGF production. In contrast, the opposite results were observed with silencing IGF-1, which was consistent with the effects of miR-18b overexpression. MiR-18b exerted its function on VEGF synthesis and cell proliferation by suppressing the IGF-1/insulin growth factor-1 receptor (IGF1R) pathway, consequently inhibiting the downstream phosphorylation of Akt, MEK, and ERK. Hence, this may provide a new insight into understanding the mechanism of DR pathogenesis, as well as a potential therapeutic target for proliferative DR.
Collapse
Affiliation(s)
- Jin-Hui Wu
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Yi-Han Wang
- Departments of Ophthalmology at Renji Hospital, Shanghai, China
| | - Wei Wang
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Wei Shen
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Zhi Sang
- Departments of Ophthalmology at Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Liu
- Departments of Ophthalmology at Renji Hospital, Shanghai, China
| | - Cui-Min Chen
- Departments of Central Sterile Supply at Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
8
|
Yang J, Sun H, Zhang J, Hu M, Wang J, Wu G, Wang G. Regulation of β-adrenergic receptor trafficking and lung microvascular endothelial cell permeability by Rab5 GTPase. Int J Biol Sci 2015; 11:868-78. [PMID: 26157342 PMCID: PMC4495405 DOI: 10.7150/ijbs.12045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/05/2015] [Indexed: 01/01/2023] Open
Abstract
Rab5 GTPase modulates the trafficking of the cell surface receptors, including G protein-coupled β-adrenergic receptors (β-ARs). Here, we have determined the role of Rab5 in regulating the internalization of β-ARs in lung microvascular endothelial cells (LMECs) and in maintaining the integrity and permeability of endothelial cell barrier. Our data demonstrate that lipopolysaccharide (LPS) treatment disrupts LMEC barrier function and reduces the cell surface expression of β-ARs. Furthermore, the activation of β-ARs, particularly β2-AR, is able to protect the LMEC permeability from LPS injury. Moreover, siRNA-mediated knockdown of Rab5 inhibits both the basal and agonist-provoked internalization of β-ARs, therefore, enhancing the cell surface expression of the receptors and receptor-mediated ERK1/2 activation. Importantly, knockdown of Rab5 not only inhibits the LPS-induced effects on β-ARs but also protects the LMEC monolayer permeability. All together, these data provide strong evidence indicating a crucial role of Rab5-mediated internalization of β-ARs in functional regulation of LMECs.
Collapse
Affiliation(s)
- Junjun Yang
- 1. Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Huan Sun
- 1. Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jihang Zhang
- 2. Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Mingdong Hu
- 1. Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jianchun Wang
- 1. Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guangyu Wu
- 3. Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta 30912, USA
| | - Guansong Wang
- 1. Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
9
|
Ye EA, Steinle JJ. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J Neuroinflammation 2015; 12:44. [PMID: 25888955 PMCID: PMC4355155 DOI: 10.1186/s12974-015-0265-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/10/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mechanisms underlying the pathology of diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. Emerging evidence shows the impact of microRNA (miR) as a potential novel therapeutic target. The purpose of our study was to test the hypothesis that miR-15b and miR-16 are altered by hyperglycemia in retinal endothelial cells (REC), and that miR-15b/16 play key roles in regulating insulin signaling through a reduction in TNFα- and suppressor of cytokine signaling 3 (SOCS3)-mediated insulin resistance pathways. METHODS Human REC were maintained in normal (5 mM) glucose or transferred to high-glucose medium (25 mM) for 3 days. REC were transfected with miRNA mimics (hsa-miR-15b-5p and hsa-miR-16-5p) 48 h before cell harvest. A final concentration of 30 nM was used when transfected separately (miR-15b and miR-16) and 15 nM was used in combination (miR-15b + miR-16). A negative control group was treated with an equal concentration of a mimic negative control. The levels of miRNA overexpression were verified using quantitative reverse transcription-polymerase chain reaction and real-time PCR. Western blot analyses were performed to study the levels of phosphorylated Akt (Serine 473), Akt, SOCS3, insulin receptor, phosphorylated insulin receptor (tyrosine 1150/1151), and insulin receptor phosphorylated on Tyr960. In addition, ELISA was used to examine cleaved caspase 3 and TNFα. Analyses were done using unpaired Student t test. Data are presented as mean ± S.E.M. RESULTS We demonstrated that the expression of miR-15b and miR-16 was reduced in human REC cultured in hyperglycemia. Overexpression of miR-15b and/or miR-16 reduced TNFα and SOCS3 levels, while increasing insulin-like growth factor binding protein-3 (IGFBP-3) levels and the phosphorylation of insulin receptor (IR)(Tyr1150/1151) in REC cultured in hyperglycemia. These, in turn, led to an increase of Akt phosphorylation and decreased cleavage of caspase 3. CONCLUSIONS miR-15b and miR-16 play a role in the inhibition of insulin resistance via reduced TNFα and SOCS3 signaling and increased IGFBP-3 levels, resulting in REC protection from hyperglycemia-induced apoptosis. This outcome suggests that both miR-15b and miR-16 are potential therapeutic targets for therapeutics for the diabetic retina.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA.
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA. .,Department of Ophthalmology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA.
| |
Collapse
|
10
|
The β-adrenergic system as a possible new target for pharmacologic treatment of neovascular retinal diseases. Prog Retin Eye Res 2014; 42:103-29. [DOI: 10.1016/j.preteyeres.2014.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
|
11
|
Abstract
Retinal endothelial cell (REC) apoptosis occurs in response to a number of stressors, including high glucose, oxidative stress, hypoxia. Because these stressors are common factors in a number of ocular diseases, it is critical to understand the cellular mechanisms by which apoptosis occurs in REC. This review discusses the various models of REC used in ophthalmological research. The mechanisms responsible for REC apoptosis are discussed, as well as potential therapeutics currently under development to prevent REC apoptosis. The primary goal of this review is provide the reader with a background knowledge of the current state of research ongoing in REC apoptosis and potential avenues for future testing.
Collapse
Affiliation(s)
- Jena J Steinle
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, 930 Madison Avenue, Suite 768A, Memphis, TN 38163, USA.
| |
Collapse
|
12
|
Lavine JA, Sang Y, Wang S, Ip MS, Sheibani N. Attenuation of choroidal neovascularization by β(2)-adrenoreceptor antagonism. JAMA Ophthalmol 2013; 131:376-82. [PMID: 23303344 DOI: 10.1001/jamaophthalmol.2013.1476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To determine whether β-adrenergic blockade inhibits choroidal neovascularization (CNV) in a mouse model of laser-induced CNV and to investigate the mechanism by which β-adrenoreceptor antagonism blunts CNV. DESIGN Mice were subjected to laser burns, inducing CNV, and were treated with daily intraperitoneal injections of propranolol hydrochloride. Neovascularization was measured on choroidal-scleral flat mounts using intercellular adhesion molecule 2 immunofluorescence staining. The effect of β-adrenoreceptor signaling on expression of vascular endothelial growth factor (VEGF) was investigated using primary mouse choroidal endothelial cells (ChECs) and retinal pigment epithelial (RPE) cells. These cells were incubated with β-adrenoreceptor agonists and/or antagonists and assayed for Vegf messenger RNA and protein levels. SETTING University of Wisconsin School of Medicine and Public Health. PARTICIPANTS Wild-type 6-week-old female C57BL/6j mice. MAIN OUTCOME MEASURES Inhibition of CNV after propranolol treatment and Vegf messenger RNA and protein expression after treatment with β-adrenoreceptor agonists and antagonists. RESULTS Propranolol-treated mice demonstrated a 50% reduction in laser-induced CNV. Treatment with norepinephrine bitartrate stimulated Vegf messenger RNA expression and protein secretion in ChECs and RPE cells. This effect was blocked by β2-adrenoreceptor antagonism and mimicked by β2-adrenoreceptor agonists. CONCLUSIONS Attenuation of CNV is achieved by β-adrenergic blockade. The β2-adrenoreceptors regulate VEGF expression in ChECs and RPE cells. CLINICAL RELEVANCE Antagonists of β-adrenoreceptors are safe and well tolerated in patients with glaucoma and cardiovascular disease. Thus, blockade of β-adrenoreceptors may provide a new avenue to inhibit VEGF expression in CNV.
Collapse
Affiliation(s)
- Jeremy A Lavine
- Departments of Ophthalmology and Visual Science, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|
13
|
Jiang Y, Zhang Q, Soderland C, Steinle JJ. TNFα and SOCS3 regulate IRS-1 to increase retinal endothelial cell apoptosis. Cell Signal 2012; 24:1086-92. [PMID: 22266116 PMCID: PMC4073498 DOI: 10.1016/j.cellsig.2012.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 01/09/2023]
Abstract
Rates of diabetes are reaching epidemic levels. The key problem in both type 1 and type 2 diabetes is dysfunctional insulin signaling, either due to lack of production or due to impaired insulin sensitivity. A key feature of diabetic retinopathy in animal models is degenerate capillary formation. The goal of this present study was to investigate a potential mechanism for retinal endothelial cell apoptosis in response to hyperglycemia. The hypothesis was that hyperglycemia-induced TNFα leads to retinal endothelial cell apoptosis through inhibition of insulin signaling. To test the hypothesis, primary human retinal endothelial cells were grown in normal glucose (5 mM) or high glucose (25 mM) and treated with exogenous TNFα, TNFα siRNA or suppressor of cytokine signaling 3 (SOCS3) siRNA. Cell lysates were processed for Western blotting and ELISA analyses to verify TNFα and SOCS3 knockdown, as well as key pro- and anti-apoptotic factors, IRS-1, and Akt. Data indicate that high glucose culturing conditions significantly increase TNFα and SOCS3 protein levels. Knockdown of TNFα and SOCS3 significantly increases anti-apoptotic proteins, while decreasing pro-apoptotic proteins. Knockdown of TNFα leads to decreased phosphorylation of IRS-1(Ser307), which would promote normal insulin signaling. Knockdown of SOCS3 increased total IRS-1 levels, as well as decreased IR(Tyr960), both of which would inhibit retinal endothelial cell apoptosis through increased insulin signaling. Taken together, our findings suggest that increased TNFα inhibits insulin signaling in 2 ways: 1) increased phosphorylation of IRS-1(Ser307), 2) increased SOCS3 levels to decrease total IRS-1 and increase IR(Tyr960), both of which block normal insulin signal transduction. Resolution of the hyperglycemia-induced TNFα levels in retinal endothelial cells may prevent apoptosis through disinhibition of insulin receptor signaling.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Jena J. Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|