1
|
Guo YY, Zhou Y, Li YJ, Liu A, Yue J, Liu QQ, Yang L, Wu YM, Liu SB, Zhang K, Zhao MG. Scutellarin ameliorates the stress-induced anxiety-like behaviors in mice by regulating neurotransmitters. Phytother Res 2021; 35:3936-3944. [PMID: 33856723 DOI: 10.1002/ptr.7106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/09/2022]
Abstract
Anxiety disorders are a common frequently psychiatric symptom in patients that lead to disruption of daily life. Scutellarin (Scu) is the main component of Erigeron breviscapus, which has been used as a neuroprotective agent against glutamate-induced excitotoxicity. However, the potential effect of Scu on the stress-related neuropsychological disorders has not been clarified. In this study, Anxiety-like behavior was induced by acute restraint stress in mice. Scu were injected intraperitoneally (twice daily, 3 days). Results showed that Scu exhibited good protective activity on mice by decreasing transmitter release levels. Restraint stress caused significant anxiety like behavior in mice. Treatment of Scu could significantly improve the moving time of open arms in Elevated Plus Maze and central time on open field test. Scu treatment suppressed action potential firing frequency, restored excessive presynaptic quantal release, and down-regulated glutamatergic receptor expression levels in the prefrontal cortex (PFC) of stressed mice. GABAA Rα1 and GABAA γ2 expression in the brain PFC tissues of mice were nearly abrogated by Scu treatment. In stress-induced anxiety mice, stress can increase the frequency of mini excitatory postsynaptic currents (mEPSC), which can be reversed by Scu treatment. Therefore, Scu has a potent anxiolytic activity and may be valuable for the treatment of stress-induced anxiety disorders.
Collapse
Affiliation(s)
- Yan-Yan Guo
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Zhou
- Department of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Yu-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Liu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qing-Qing Liu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. Neuromolecular Med 2016; 18:264-73. [PMID: 27103430 DOI: 10.1007/s12017-016-8394-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
Abstract
The cerebral ischemia is one of the most common diseases in the central nervous system that causes progressive disability or even death. In this connection, the inflammatory response mediated by the activated microglia is believed to play a central role in this pathogenesis. In the event of brain injury, activated microglia can clear the cellular debris and invading pathogens, release neurotrophic factors, etc., but in chronic activation microglia may cause neuronal death through the release of excessive inflammatory mediators. Therefore, suppression of microglial over-reaction and microglia-mediated neuroinflammation is deemed to be a therapeutic strategy of choice for cerebral ischemic damage. In the search for potential herbal extracts that are endowed with the property in suppressing the microglial activation and amelioration of neuroinflammation, attention has recently been drawn to scutellarin, a Chinese herbal extract. Here, we review the roles of activated microglia and the effects of scutellarin on activated microglia in pathological conditions especially in ischemic stroke. We have further extended the investigation with special reference to the effects of scutellarin on Notch signaling, one of the several signaling pathways known to be involved in microglial activation. Furthermore, in light of our recent experimental evidence that activated microglia can regulate astrogliosis, an interglial "cross-talk" that was amplified by scutellarin, it is suggested that in designing of a more effective therapeutic strategy for clinical management of cerebral ischemia both glial types should be considered collectively.
Collapse
|
3
|
Fang M, Yuan Y, Lu J, Li HE, Zhao M, Ling EA, Wu CY. Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem Int 2016; 97:154-71. [PMID: 27105682 DOI: 10.1016/j.neuint.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/28/2022]
Abstract
Scutellarin, an anti-inflammatory agent, has been reported to suppress microglia activation. It promotes astrocytic reaction but through activated microglia. Here we sought to determine more specifically the outcomes of scutellarin treatment in reactive astrocytes in rats subjected to middle cerebral artery occlusion (MCAO). GFAP, MAP-2 and PSD-95 expression was assessed in reactive astrocytes in scutellarin injected MCAO rats. Expression of BDNF, NT-3 and IGF-1, and cell cycle markers cyclin-D1/B1 was also evaluated. In vitro, the above-mentioned proteins were also investigated in TNC 1 and primary astrocytes, treated respectively with conditioned medium from BV-2 microglia with or without pretreatment of scutellarin and lipopolysaccharide. Behavioral study was conducted to ascertain if scutellarin would improve the neurological functions of MCAO rats. In MCAO, reactive astrocytes in the penumbral areas were hypertrophic bearing long extending processes; expression of all the above-mentioned markers was markedly augmented. When compared to the controls, TNC1/primary astrocytes responded vigorously to conditioned medium derived from BV-2 microglia treated with scutellarin + lipopolysaccharide as shown by enhanced expression of all the above markers by Western and immunofluorescence analysis. By electron microscopy, hypertrophic TNC1 astrocytes in this group showed abundant microfilaments admixed with microtubules. In MCAO rats given scutellarin treatment, neurological scores were significantly improved coupled with a marked decrease in infarct size when compared with the matching controls. It is concluded that scutellarin is neuroprotective and that it can amplify astrogliosis but through activated microglia. Scutellarin facilitates tissue remodeling in MCAO that maybe linked to improvement of neurological functions.
Collapse
Affiliation(s)
- Ming Fang
- Department of Emergency and Critical Care, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Jia Lu
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore; Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.
| | - Hong E Li
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Min Zhao
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
4
|
In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules 2014; 19:5748-60. [PMID: 24802986 PMCID: PMC6271944 DOI: 10.3390/molecules19055748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.
Collapse
|
5
|
Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with (18) F-Fluorodeoxyglucose MicroPET. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:507091. [PMID: 23737833 PMCID: PMC3659649 DOI: 10.1155/2013/507091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022]
Abstract
Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation.
Collapse
|