1
|
Zhang X, Cai W, Wang C, Tian J. N-methyl-d-aspartate receptors (NMDARs): a glutamate-activated cation channel with biased signaling and therapeutic potential in brain disorders. Pharmacol Ther 2025:108888. [PMID: 40412765 DOI: 10.1016/j.pharmthera.2025.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are a type of calcium-permeable ion channel receptors that are extensively distributed throughout the body, composed of various subunits. The presence of diverse ligands and subcellular localizations of the receptors confer biased signaling and distinct functional roles. Activation of the NMDARs induces calcium influx, which plays a pivotal role in neurotransmitter release, synaptic plasticity, and intracellular signaling. Differential localization of NMDARs at synaptic and extrasynaptic sites results in divergent physiological effects; excessive or insufficient activation of NMDARs disrupts calcium homeostasis, leading to neuronal damage and subsequent neurological dysfunction as well as related diseases. Therefore, it is crucial to develop drugs targeting NMDAR with high efficacy with low toxicity for treating disorders associated with NMDARs abnormalities. In this review, we summarize both fundamental and clinical studies on NMDARs while discussing potential therapeutic targets aimed at modulating ion channel activity through regulating mechanisms, subunit rearrangement, membrane expression, and the specific targeting of synaptic versus extrasynaptic NMDARs. Our goal is to provide new insights for innovative drug development.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Wensheng Cai
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guang Dong, PR China
| | - Jing Tian
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China.
| |
Collapse
|
2
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
3
|
Lagali PS, Zhao BYH, Yan K, Baker AN, Coupland SG, Tsilfidis C, Picketts DJ. Sensory Experience Modulates Atrx-mediated Neuronal Integrity in the Mouse Retina. Neuroscience 2020; 452:169-180. [PMID: 33197500 DOI: 10.1016/j.neuroscience.2020.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Mutation of the α-thalassemia/mental retardation syndrome X-linked protein, ATRX, causes intellectual disability and is associated with pleiotropic defects including ophthalmological abnormalities. We have previously demonstrated that Atrx deficiency in the mouse retina leads to the selective loss of inhibitory interneurons and inner retinal dysfunction. Onset of the amacrine cell neurodegenerative phenotype in Atrx-deficient retinas occurs postnatally after neuronal specification, and coincides with eye opening. Given this timing, we sought to interrogate the influence of light-dependent visual signaling on Atrx-mediated neuronal survival and function in the mouse retina. Retina-specific Atrx conditional knockout (cKO) mice were subjected to light deprivation using two different paradigms: (1) a dark-rearing regime, and (2) genetic deficiency of metabotropic glutamate receptor 6 (mGluR6) to block the ON retinal signaling pathway. Scotopic electroretinography was performed for adult dark-reared Atrx cKO mice and controls to measure retinal neuron function in vivo. Retinal immunohistochemistry and enumeration of amacrine cells were performed for both light deprivation paradigms. We observed milder normalized a-wave, b-wave and oscillatory potential (OP) deficits in electroretinograms of dark-reared Atrx cKO mice compared to light-exposed counterparts. In addition, amacrine cell loss was partially limited by genetic restriction of retinal signaling through the ON pathway. Our results suggest that the temporal features of the Atrx cKO phenotype are likely due to a combined effect of light exposure upon eye opening and coincident developmental processes impacting the retinal circuitry. In addition, this study reveals a novel activity-dependent role for Atrx in mediating post-replicative neuronal integrity in the CNS.
Collapse
Affiliation(s)
- Pamela S Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brandon Y H Zhao
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Adam N Baker
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Stuart G Coupland
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Ophthalmology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
4
|
Kimura J, Shimizu K, Kajima K, Yokosuka A, Mimaki Y, Oku N, Ohizumi Y. Nobiletin Reduces Intracellular and Extracellular β-Amyloid in iPS Cell-Derived Alzheimer’s Disease Model Neurons. Biol Pharm Bull 2018; 41:451-457. [DOI: 10.1248/bpb.b17-00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junko Kimura
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kosuke Shimizu
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasushi Ohizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
- Kansei Fukushi Research Institute, Tohoku Fukushi University
| |
Collapse
|
5
|
Distribution and development of P2Y1-purinoceptors in the mouse retina. J Mol Histol 2013; 44:639-44. [PMID: 23907621 DOI: 10.1007/s10735-013-9525-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
There is increasing evidence that ATP acts on purinergic receptors and mediates synaptic transmission in the retina. In a previous study, we raised the possibility that P2X-purinoceptors, presumably P2X(2)-purinoceptors in OFF-cholinergic amacrine cells, play a key role in the formation of OFF pathway-specific modulation. In this study, we examined whether the P2Y(1)-purinoceptors can function in cholinergic amacrine cells in the mouse retina since cholinergic amacrine cells in the rat retina express P2Y(1)-purinoceptors. P2Y(1)-purinoceptors were shown to be expressed in dendrites of both ON- and OFF-cholinergic amacrine cells in adults. At postnatal day 7, there was immunoreactivity for P2Y(1)-purinoceptors in the soma of cholinergic amacrine cells. At postnatal day 14, weak immunoreactivity for P2Y(1)-purinoceptors was detected in the dendrites but not in the soma of cholinergic amacrine cells. At postnatal day 21, strong immunoreactivity for P2Y(1)-purinoceptors was detected in dendrites of cholinergic amacrine cells. The expression pattern of P2Y(1)-purinoceptors was not affected by visual experience. We concluded that P2Y(1)-purinoceptors are not involved in the OFF-pathway-specific signal transmission in cholinergic amacrine cells of the mouse retina.
Collapse
|
6
|
Duffield GE, Mikkelsen JD, Ebling FJP. Conserved expression of the glutamate NMDA receptor 1 subunit splice variants during the development of the Siberian hamster suprachiasmatic nucleus. PLoS One 2012; 7:e37496. [PMID: 22675426 PMCID: PMC3365105 DOI: 10.1371/journal.pone.0037496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR) are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional properties on the NMDAR. The SCN undergoes extensive developmental changes during postnatal life, including synaptogenesis and acquisition of photic signaling. These changes are especially important in the highly photoperiodic Siberian hamster, in which development of sensitivity to photic cues within the SCN could impact early physiological programming. In this study we examined the expression of NR1 isoforms in the hamster at different developmental ages. Gene expression in the forebrain was quantified by in situ hybridization using oligonucleotide probes specific to alternatively spliced regions of the NR1 heteronuclear mRNA, including examination of anterior hypothalamus, piriform cortex, caudate-putamen, thalamus and hippocampus. Gene expression analysis within the SCN revealed the absence of the N1 cassette, the presence of the C2 cassette alone and the combined absence of C1 and C2 cassettes, indicating that the dominant splice variants are NR1-2a and NR1-4a. Whilst we observe changes at different developmental ages in levels of NR1 isoform probe hybridization in various forebrain structures, we find no significant changes within the SCN. This suggests that a switch in NR1 isoform does not underlie or is not produced by developmental changes within the hamster SCN. Consistency of the NR1 isoforms would ensure that the response of the SCN cells to photic signals remains stable throughout life, an important aspect of the function of the SCN as a responder to environmental changes in quality/quantity of light over the circadian day and annual cycle.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
| | | | | |
Collapse
|